Begin by noting that
$$H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n},$$
where $H_n$ is the $n$th Harmonic number. So we wish to show the following Euler sum
$$\sum_{n = 1}^\infty \left (\frac{H_n}{n} \right )^2 = \frac{17 \pi^4}{360}.$$
To prepare the ground, I first show that
$$\int_0^1 x^{n - 1} \ln^2 (1 - x) \, dx = \frac{H^2_n + H^{(2)}_n}{n}.\qquad (*)$$
To show this result, I will make use of the following result I proved here:
$$\frac{\partial}{\partial m} \operatorname{B} (n,m) = - \operatorname{B} (n,m) \sum_{k = 0}^{n - 1} \frac{1}{k + m}.\tag1$$
Here $\operatorname{B} (n,m)$ is the Beta function.
Now
\begin{align}
\int_0^1 x^{n - 1} \ln^2 (1 - x) \, dx &= \frac{\partial^2}{\partial m^2} \left [\int_0^1 x^{n - 1} (1 - x)^{m - 1} \, dx \right ]_{m = 1}\\
&=\frac{\partial^2}{\partial m^2} \operatorname{B} (n,m) \Big{|}_{m = 1}\\
&= \frac{\partial}{\partial m} \left [\frac{\partial}{\partial m} \operatorname{B} (n,m) \right ]_{m = 1}\\
&= \frac{\partial}{\partial m} \left [- \operatorname{B} (n,m) \sum_{k = 0}^{n = 1} \frac{1}{k + m} \right ]_{m = 1}\tag2\\
&= \operatorname{B} (n,m) \left. \left (\sum_{k = 0}^{n - 1} \frac{1}{k + m} \right )^2 \right |_{m = 1} - \operatorname{B} (n,m) \frac{\partial}{\partial m} \left [\sum_{k = 0}^{n - 1} \frac{1}{k + m} \right ]_{m = 1}\tag3\\
&= \operatorname{B} (n,1) \left (\sum_{k = 0}^{n - 1} \frac{1}{k + 1} \right )^2 - \operatorname{B} (n,m) \left [H^{(2)}_{m - 1} - H^{(2)}_{m + n - 1} \right ]_{m = 1}\tag4\\
&= \operatorname{B}(n,1) \left (\sum_{k = 1}^n \frac{1}{k} \right )^2 + \operatorname{B} (n,1) H^{(2)}_n\tag5\\
&= \frac{H^2_n + H^{(2)}_n}{n},\tag6
\end{align}
as required. Here $H^{(p)}_n$ denotes the $n$th generalised harmonic number of order $p$ such that $H^{(1)}_n = H_n$.
Reasons
(2) Application of the result given in (1).
(3) Product rule together with using the result given in (1).
(4) $\displaystyle{\sum_{k = 0}^{n - 1} \frac{1}{k + m} = \psi (n + m) - \psi (m)}$, where $\psi (x)$ is the digamma function. Thus
$\displaystyle{\frac{\partial}{\partial m} \sum_{k = 0}^{n - 1} \frac{1}{k + m} = \psi^{(1)} (n + m) - \psi^{(1)} (m)} = -H^{(2)}_{m + n - 1} + H^{(2)}_{m - 1}$ since $\psi^{(1)} (a) = \zeta (2) - H^{(2)}_{a - 1}$.
(5) Shifting the index in the sum by $k \mapsto k - 1$.
(6) Since $\operatorname{B} (n,1) = 1/n$.
Moving to the main event, if we divide ($*$) by $n$ before summing the result from $1$ to $\infty$ one has
$$\sum_{n = 1}^\infty \int_0^1 \frac{x^{n - 1}}{n} \ln^2 (1 - x) \, dx = \sum_{n = 1}^\infty \frac{H^2_n}{n^2} + \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^2}.$$
Making use of the result
$$\sum_{n = 1}^\infty \frac{H^{(p)}_n}{n^p} = \frac{\zeta^2 (p) + \zeta (2p)}{2},$$
which is proved here, on setting $p = 2$ we see that
$$\sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^2} = \frac{7 \pi^4}{360},$$
giving
$$\sum_{n = 1}^\infty \left (\frac{H_n}{n} \right )^2 = \sum_{n = 1}^\infty \int_0^1 \frac{x^{n - 1}}{n} \ln^2 (1 - x) \, dx - \frac{7 \pi^4}{360}.\qquad (**)$$
For the remaining term on the right hand side it can be knocked over with relative ease. Interchanging the sum with the integral sign we have
\begin{align}
\int_0^1 \ln^2 (1 - x) \, dx \sum_{n = 1}^\infty \frac{x^{n - 1}}{n} \, dx &= -\underbrace{\int_0^1 \frac{\ln^3 (1 - x)}{x} \, dx}_{x \mapsto 1 - x}\\
&= -\int_0^1 \frac{\ln^3 x}{1 - x} \, dx\\
&= -\int_0^1 \ln^3 x \sum_{n = 0}^\infty x^n \, dx\\
&= -\sum_{n = 0}^\infty \int_0^1 x^n \ln^3 x \, dx\\
&= -\sum_{n = 0}^\infty \frac{d^3}{ds^3} \left [\int_0^1 x^{n + s} \, dx \right ]_{s = 1}\\
&= -\sum_{n = 0}^\infty \frac{d^3}{ds^3} \left [\frac{1}{n + s + 1} \right ]_{s = 1}\\
&= 6 \, \underbrace{\sum_{n = 0}^\infty \frac{1}{(n + 1)^4}}_{n \mapsto n - 1}\\
&= 6 \sum_{n = 1}^\infty \frac{1}{n^4}\\
&= 6 \, \zeta (4)\\
&= \frac{\pi^4}{15}.
\end{align}
Substituting the value found for this last term back into ($**$) we finally arrive at
$$\sum_{n = 1}^\infty \left (\frac{H_n}{n} \right )^2 = \frac{\pi^4}{15} - \frac{7 \pi^4}{360} = \frac{17 \pi^4}{360},$$
as required.