For a slight variation on a theme.
As
$$\int_0^1 x^{n - 1} \ln^2 (1 - x) \, dx = \frac{H^2_n}{n} + \frac{H^{(2)}_n}{n},$$
for a proof of this result, see here, we can write the sum as
\begin{align}
\sum_{n = 1}^\infty \frac{H^2_n}{n^4} &= \sum_{n = 1}^\infty \frac{1}{n^3} \cdot \frac{H^2_n}{n}\\
&= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + \int_0^1 \frac{\ln^2 (1 - x)}{x} \sum_{n = 1}^\infty \frac{x^n}{n^3} \, dx\\
&= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + \int_0^1 \frac{\ln^2 (1 - x) \operatorname{Li}_3 (x)}{x} \, dx.\tag1
\end{align}
Making use of the following Maclaurin series expansion for $\ln^2 (1 - x)$, namely
$$\ln^2 (1 - x) = 2 \sum_{n = 1}^\infty \frac{H_n x^{n + 1}}{n + 1},$$
the integral in (1) can be re-written as
\begin{align}
\sum_{n = 1}^\infty \frac{H^2_n}{n^4} &= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + 2 \sum_{n = 1}^\infty \frac{H_n}{n + 1} \underbrace{\int_0^1 x^n \operatorname{Li}_3 (x) \, dx}_{\text{IBP 3 times}}\\
&= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + 2 \sum_{n = 1}^\infty \frac{H_n}{n+ 1} \left [\frac{\zeta (3)}{n + 1} - \frac{\zeta (2)}{(n + 1)^2} + \frac{H_{n + 1}}{(n + 1)^3} \right ]\\
&= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + 2 \zeta (3) \underbrace{\sum_{n = 1}^\infty \frac{H_n}{(n + 1)^2}}_{n \, \mapsto \, n - 1} -2 \zeta (2) \underbrace{\sum_{n = 1}^\infty \frac{H_n}{(n + 1)^3}}_{n \, \mapsto \, n - 1} + 2 \underbrace{\sum_{n = 1}^\infty \frac{H_n H_{n + 1}}{(n + 1)^2}}_{n \, \mapsto \, n - 1}\\
&= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + 2 \zeta (3) \sum_{n = 1}^\infty \frac{1}{n^2} \left (H_n - \frac{1}{n} \right ) - 2 \zeta (2) \sum_{n = 1}^\infty \frac{1}{n^3} \left (H_n - \frac{1}{n} \right )\\
& \qquad + 2 \sum_{n = 1}^\infty \frac{H_n}{n^4} \left (H_n - \frac{1}{n} \right )\\
&= - \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} + 2 \zeta (3) \sum_{n = 1}^\infty \frac{H_n}{n^2} - 2 \zeta^2 (3) - 2 \zeta (2) \sum_{n = 1}^\infty \frac{H_n}{n^3} + 2 \zeta (2) \zeta (4)\\
& \qquad + 2 \sum_{n = 1}^\infty \frac{H^2_n}{n^4} - 2 \sum_{n = 1}^\infty \frac{H_n}{n^5}\\
\Rightarrow \sum_{n = 1}^\infty \frac{H^2_n}{n^4} &= \sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} - 2 \zeta (3) \sum_{n = 1}^\infty \frac{H_n}{n^2} + 2 \zeta (2) \sum_{n = 1}^\infty \frac{H_n}{n^3} + 2 \sum_{n = 1}^\infty \frac{H_n}{n^5}\\
& \qquad + 2 \zeta^2 (3) - 2 \zeta (2) \zeta (4).\tag2
\end{align}
Making use of the following results:
\begin{align}
\sum_{n = 1}^\infty \frac{H_n}{n^2} &= 2 \zeta (3)\\
\sum_{n = 1}^\infty \frac{H_n}{n^3} &= \frac{5}{4} \zeta (4)\\
\sum_{n = 1}^\infty \frac{H_n}{n^5} &= -\frac{1}{2} \zeta^2 (3) + \frac{7}{4} \zeta (6)\\
\sum_{n = 1}^\infty \frac{H^{(2)}_n}{n^4} &= \zeta^2 (3) - \frac{1}{3} \zeta (6)\\
\zeta (2) \zeta (4) &= \frac{7}{6} \zeta (6)
\end{align}
substituting into (2) leads to
$$\sum_{n = 1}^\infty \frac{H^2_n}{n^4} = \frac{97}{24} \zeta (6) - 2 \zeta^2 (3),$$
as desired.
Anyway have you tried to split into two integrals with partial fraction? One has: $$\int_0^1 \frac{\ln^2(1-x)\ln^3 x}{x}dx=-12\sum_{n=1}^\infty \frac{H_n}{(n+1)^5}$$
– Zacky Jun 02 '19 at 15:24