Show that $\dfrac{(m!)^{1/m}}{m/e}$ is a decreasing function of $m$.
Here is my proof.
I would like to see others, preferably simpler.
I have shown in Proof explanation $\lim\limits_{n\to\infty}\frac{n}{\sqrt[n]{n!}}=e$ that, if $r_m =\dfrac{(m!)^{1/m}}{m/e} $, then $r_m > 1+1/m $.
This was based on $(1+1/m)^m < e \lt (1+1/m)^{m+1} $, which was also shown there.
Since $r_m \to 1$, this leads to the conjecture that $r_m$ is a decreasing function of $m$.
Let $s_m = \dfrac{r_{m+1}}{r_m}$.
Then, since $r_m > 1+1/m$ implies that $m! > (1+1/m)^mm^m/e^m$,
$\begin{array}\\ s_m &= \dfrac{r_{m+1}}{r_m}\\ &= \dfrac{\dfrac{((m+1)!)^{1/(m+1)}}{(m+1)/e}}{\dfrac{(m!)^{1/m}}{m/e}}\\ &= \dfrac{\dfrac{((m+1)!)^{1/(m+1)}}{(m+1)}}{\dfrac{(m!)^{1/m}}{m}}\\ &= \dfrac{m((m+1)!)^{1/(m+1)}}{(m+1)(m!)^{1/m}}\\ \text{so}\\ s_m^{m(m+1)} &= \dfrac{m^{m(m+1)}((m+1)!)^{m}}{(m+1)^{m(m+1)}(m!)^{m+1}}\\ &= \dfrac{m^{m(m+1)}m!^m(m+1)^m}{(m+1)^{m(m+1)}m!^{m}m!}\\ &= \dfrac{m^{m(m+1)}}{(m+1)^{m^2}m!}\\ &= \dfrac{m^{m}}{(1+1/m)^{m^2}m!}\\ &< \dfrac{m^{m}}{(1+1/m)^{m^2}(1+1/m)^mm^m/e^m}\\ &= \dfrac{e^m}{(1+1/m)^{m^2+m}}\\ \text{so}\\ s_m^{m+1} &< \dfrac{e}{(1+1/m)^{m+1}}\\ &< 1\\ \end{array} $
I find it pleasing that the proof ends up depending on the upper bound for $e$.