I will show
by completely elementary means
that
$1+1/m
\lt \dfrac{(m!)^{1/m}}{m/e}
\lt (1+3/\sqrt{m})(1+1/m^2)(1+1/m)
$.
I will first show that
if
$a_n = (1+1/n)^n$
and
$b_n = (1+1/n)^{n+1}$
then
$a_n < a_{n+1}$
and
$b_n > b_{n+1}$.
Since
$a_n < b_n$
and
$b_n-a_n
=\frac1{n}(1+1/n)^n
\to 0
$,
this shows that
$\lim_{n \to \infty} a_n$
and
$\lim_{n \to \infty} b_n$
exist and are equal.
We use the very ingenious proof in
N.S Mendelsohn, "An application of a famous inequality", Amer. Math. Monthly 58 (1951), 563,
which uses the AGMI,
which we will use in the form
$((v_1+v_2+...v_n)/n)^n > v_1v_2...v_n$
(all $v_i$ positive)
with equality if and only if
all the $v_i$ are equal
(this allows us to avoid the use of n-th roots).
For $a_n$,
consider $n$ values of $1+1/n$
and 1 value of 1.
By the AGMI,
$((n+2)/(n+1))^{n+1} > (1+1/n)^n
$,
or
$(1+1/(n+1))^{n+1} > (1+1/n)^n
$, or
$a_{n+1} > a_n
$.
For $b_n$,
consider $n$ values of
$1-1/n$ and 1 value of 1.
By the AGMI,
$(n/(n+1))^{n+1} > (1-1/n)^n$
or $(1+1/n)^{n+1} < (1+1/(n-1))^n$
, or $b_n < b_{n+1}$.
Since the $a_n$ are increasing,
the $b_n$ are decreasing,
and $a_n < b_n$,
all the $a_n$
are less than
any of the $b_n$.
Since $b_5 = 2.9859... < 3
$, all the $a_n$
are less than 3.
If n > m, since $a_n < b_m$
and $b_m-a_m = a_m/m
$,
$a_n-a_m < b_m-a_m
= a_m/m < 3/m
$.
The common limit is called
$e$.
Since
$a_n < e < b_n$
for all $n$,
$\begin{array}\\
e^m
&\gt \prod_{n=1}^m a_n\\
&= \prod_{n=1}^m (1+1/n)^n\\
&= \prod_{n=1}^m \dfrac{(n+1)^n}{n^n}\\
&= \dfrac{\prod_{n=1}^m (n+1)^n}{\prod_{n=1}^m n^n}\\
&= \dfrac{\prod_{n=2}^{m+1} n^{n-1}}{\prod_{n=1}^m n^n}\\
&= \dfrac{\prod_{n=2}^{m+1} n^{n-1}}{m!\prod_{n=1}^m n^{n-1}}\\
&= \dfrac{(m+1)^m}{m!}\\
\text{so}\\
m!
&\gt \dfrac{(m+1)^m}{e^m}\\
\text{or}\\
(m!)^{1/m}
&\gt \dfrac{m+1}{e}\\
\text{or}\\
\dfrac{(m!)^{1/m}}{m/e}
&\gt 1+1/m\\
\end{array}
$
Similarly,
$\begin{array}\\
e^m
&\lt \prod_{n=1}^m b_n\\
&= \prod_{n=1}^m (1+1/n)^{n+1}\\
&= \prod_{n=1}^m \dfrac{(n+1)^{n+1}}{n^{n+1}}\\
&= \dfrac{\prod_{n=1}^m (n+1)^{n+1}}{\prod_{n=1}^m n^{n+1}}\\
&= \dfrac{\prod_{n=2}^{m+1} n^{n}}{\prod_{n=1}^m n^{n+1}}\\
&= \dfrac{\prod_{n=2}^{m+1} n^{n}}{m!\prod_{n=1}^m n^{n}}\\
&= \dfrac{(m+1)^{m+1}}{m!}\\
\text{so}\\
m!
&\lt \dfrac{(m+1)^{m+1}}{e^m}\\
&= \dfrac{(m+1)(m+1)^{m}}{e^m}\\
\text{or}\\
(m!)^{1/m}
&\lt \dfrac{(m+1)^{1/m}(m+1)}{e}\\
\text{or}\\
\dfrac{(m!)^{1/m}}{m/e}
&\lt (m+1)^{1/m}(1+1/m)\\
&= m^{1/m}(1+1/m)^{1/m}(1+1/m)\\
\end{array}
$
If
$(1+1/m)^{1/m}
= 1+h_m$,
$1+1/m
=(1+h_m)^m
\gt 1+mh_m
$
or
$h_m < 1/m^2$
so
$(1+1/m)^{1/m}
\lt 1+1/m^2
$.
Since
$(1+m^{-1/2})^m
\gt 1+m^{1/2}
\gt m^{1/2}
$,
raising to the
$2/m$ power,
$m^{1/m}
\lt
(1+m^{-1/2})^2
=1+2m^{-1/2}+m^{-1}
\le 1+3m^{-1/2}
$.
Therefore
$\dfrac{(m!)^{1/m}}{m/e}
\lt (1+3m^{-1/2})(1+1/m^2)(1+1/m)
$.
proof-explanation
means you want explanation for some established proof. Are you actually asking how to prove the limit in the title? If yes, then see this: https://math.stackexchange.com/q/201906/9464 – Jun 18 '19 at 22:28