10

I don't know how to prove that $$\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} =e.$$ Are there other different (nontrivial) nice limit that gives $e$ apart from this and the following $$\sum_{k = 0}^\infty \frac{1}{k!} = \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n = e\;?$$

Julien
  • 44,791
mez
  • 10,497
  • Do you want a proof for the first limit ? – Amr Mar 05 '13 at 22:27
  • The bottom right one, with the infinite limit, is the original. That is the ACTUAL definition. When Bernoulli originally came up with the concept. Every other equality you come across had to have been proven. – CogitoErgoCogitoSum Mar 05 '13 at 22:53
  • 2
    @Cogito, it is one possible definition. You can take any one of a number of formulas as the definition, then prove the others from the one you've chosen. – Gerry Myerson Mar 05 '13 at 23:19
  • Almost the same as this one: http://math.stackexchange.com/q/201906/9464 –  Mar 06 '13 at 00:18

6 Answers6

11

There are as many representations of $e$ as you could want at Wikipedia. $$e=\sum_1^{\infty}{k^7\over877k!}$$ $$e=\lim_{n\to\infty}n^{\pi(n)/n}$$ where $\pi(n)$ is the number of primes up to $n$. Any many, many more.

Gerry Myerson
  • 179,216
7

In the series for $$e^n=\sum_{k=0}^\infty \frac{n^k}{k!},$$ the $n$th and biggest(!) of the (throughout positve) summands is $\frac{n^n}{n!}$. On the other hand, all summands can be esimated as $$ \frac{n^k}{k!}\le \frac{n^n}{n!}$$ and especially those with $k\ge 2n$ can be estimated $$ \frac{n^k}{k!}<\frac{n^{k}}{(2n)^{k-2n}\cdot n^{n}\cdot n!}=\frac{n^{n}}{n!}\cdot \frac1{2^{k-2n}}$$ and thus we find $$\begin{align}\frac{n^n}{n!}<e^n&=\sum_{k=0}^{2n}\frac{n^k}{k!}+ \sum_{k=2n}^\infty \frac{n^k}{k!}\\&<(2n+1)\cdot\frac{n^n}{n!}+ \frac{n^n}{n!}\sum_{k=0}^\infty 2^{-k}\\&=(2n+3)\cdot\frac{n^n}{n!}.\end{align}$$ Taking $n$th roots we find $$ \frac n{\sqrt[n]{n!}}\le e\le \sqrt[n]{2n+3}\cdot\frac n{\sqrt[n]{n!}}.$$ Because $\sqrt[n]{2n+3}\to 1$ as $n\to \infty$, we obtain $$\lim_{n\to\infty}\frac n{\sqrt[n]{n!}}=e$$ from squeezing.

7

I will use Cauchy-D'Alembert criterion

$$\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} =e$$

you can write the limit as $$\sqrt[n]{\frac{n^{n}}{n!}}.$$

Let be $\displaystyle x_{n}=\frac{n^{n}}{n!}.$

Now we can do $$\frac{x_{n+1}}{x_{n}}=\frac{\frac{(n+1)^{n}\cdot (n+1)}{n! \cdot (n+1)}}{\frac{n^n}{n!}}=\frac{(n+1)^{n}\cdot (n+1)}{n! \cdot (n+1)}\cdot \frac{n!}{n^{n}}=\frac{(n+1)^{n}}{n^n}=\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^n \to e. $$

So $\displaystyle \lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} =e.$

Iuli
  • 6,790
6

Since $$ \ln \left( \frac{n}{\sqrt[n]{n!}}\right)=\ln n-\frac{\ln n!}{n} $$ all you need is the weak Stirling formula: $$ \ln n!=n\ln n -n +O(\ln n). $$ By comparison with the integral of the nondecreasing function $\ln t$: $$ \int_1^n\ln tdt\leq \ln n! =\sum_{k=2}^n \ln k\leq \int_2^{n+1}\ln t dt. $$ Recall that $\int \ln tdt =t\ln t -t +C$ and compute the lhs and the rhs.

The weak Stirling formula follows easily.

Micah
  • 38,108
  • 15
  • 85
  • 133
Julien
  • 44,791
3

Use Stirling's approximation

$$\frac{n}{\sqrt[n]{n!}}\cong\frac{n}{\sqrt[n]{\sqrt{2\pi }\,n^{n+1/2}e^{-n}}}=\frac{1}{(2\pi)^{1/2n}}\frac{e}{n^{1/2n}}\xrightarrow[n\to\infty]{}1\cdot\frac{e}{1}=e$$

Pedro
  • 122,002
DonAntonio
  • 211,718
  • 17
  • 136
  • 287
1

I found this here:

$$e = \lim_{n \to \infty} \sqrt[n]{n\#}$$

Also see this related older post.

draks ...
  • 18,449