We have
$$
\frac{n}{\sqrt[n]{n!}}=\left(\frac{n^n}{n!}\right)^{1/n}=\exp\left(\frac1n\,\log\left(\frac{n^n}{n!}\right)\right)
=\exp\left(\frac1n\,n\log n-\frac1n\,\log n!\right)
=\exp\left(\log n-\frac1n\,\sum_{k=2}^n\log k\right).
$$
Now we have
$$
\int_1^{n-1}\log t\,dt\leq\sum_{k=2}^n\log k\leq\int_1^n\log t\,dt,
$$
i.e.
$$(n-1)\log n-(n-2)\leq\sum_{k=2}^n\log k\leq n\log n - (n-1).$$
Then
$$\log n-\log n+\frac{n-1}n\leq\log n-\frac1n\,\sum_{k=2}^n\log k\leq\log n-\frac{n-1}n\,\log n+\frac{n-2}n,$$
or
$$1-\frac{1}n\leq\log n-\frac1n\,\sum_{k=2}^n\log k\leq-\frac{1}n\,\log n+1-\frac2n.$$
Thus
$$
\lim_{n\to\infty}\log n-\frac1n\,\sum_{k=2}^n\log k=1,
$$
and
\begin{align}
\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}&=\lim_{n\to\infty}\exp\left(\log n-\frac1n\,\sum_{k=2}^n\log k\right)\\ &=\exp\left(\lim_{n\to\infty}\log n-\frac1n\,\sum_{k=2}^n\log k\right)\\ &=\exp(1)=e.
\end{align}