Let $A,B$ be skew symmetric 3-dimensional real non-zero matrices. Because dimension is odd they have non-trivial one-dimensional kernels.
- Is it true that $AB$ is nilpotent iff $\text{ker}(A)$ $\perp$ $\text{ker}(B)$? How to prove it?
The example illustrating one direction of the implication:
$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 4 \\ -2 & -4 & 0 \end{bmatrix}\begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & -1 \\ -3 & 1 & 0 \end{bmatrix}=\begin{bmatrix} -4 & 2 & -1 \\ -12 & 6 & -3 \\ -8 & 4 & -2 \end{bmatrix}=C $
we have here $C^2=0$.