2

Prove that for all nonzero integers $a$ and $b$, if $\gcd(|a|,|b|)=1$ then for all integers $c$, if $a\mid bc$ then $a\mid c$.

Given that $\gcd(|a|,|b|)=1$ then there exists $m,n\in Z$ such that $am+bn=1$ which implies $acm+bcn=c$.

Given $a|bc$, to show $a\mid c$. Now, $a\mid acm$ and $a\mid bcm$ as $a\mid bc$ implies $a\mid acm +bcn = c$. Therefore $a\mid c$.

Is my proof sufficient? Thank you!

N. F. Taussig
  • 76,571

0 Answers0