Another way: $ $ by Euler $\phi$, $\,\ \begin{align}(a,b)=1\\ n= \phi(b)\ \end{align} $ $\, \Rightarrow\ \begin{align} c\,&\equiv\, a^{\large n}c\!\pmod{\! b}\\ {\rm i.e.}\,\ \ c\,&=\, a (a^{\large n-1}c)+b\,y \end{align}$
Remark $\ $ See here for alternative proofs. What works best in any given context depends on the order that the basic theorems are presented. There are many possible orders, e.g. see Pierre Samuel's Sur l'organisation d'un cours d'arithmétique, L'Enseignement Mathématique, 13 (1967) 223-231, where he examines in detail approaches based on all possible permutations of a few fundamental theorems (one uses Lagrange's theorem to derive the gcd Bezout equation, as here).
Update $\ $ The linked answer's thread has been deleted so I repost the answer below.
Hint $\ $ Use Euler's Theorem $\rm \,(c,m)=1\,\Rightarrow\,c^{\large \phi(m)}\equiv 1\pmod m,\,$ or use Bezout as follows:
$$\rm \exists\, x\in\Bbb Z\!:\ cx\equiv b\!\!\!\pmod{\! m}\!\iff\! \exists\, x,y\in\Bbb Z\!:\ cx\!+\!my = b\!\overset{\rm\ Bezout}\iff\!\gcd(c,m)\mid b$$
Or use the following
Theorem $\ $ The following are equivalent for integers $\rm\:c,\, m.$
$(1)\rm\ \ \ gcd(c,m) = 1$
$(2)\rm\ \ \ c\:$ is invertible $\rm\,(mod\ m)$
$(3)\rm\ \ \ x\to cx+d\:$ is $\:1$-$1\:$ $\rm\,(mod\ m)$
$(4)\rm\ \ \ x\to cx+d\:$ is onto $\rm\,(mod\ m)$
Proof $\ (1\Rightarrow 2)\ $ By Bezout $\rm\, gcd(c,m)\! =\! 1\Rightarrow cd\!+\!km =\! 1\,$ for $\rm\,d,k\in\Bbb Z\,$ $\rm\Rightarrow cd\equiv 1\!\pmod{\! m}$
$(2\Rightarrow 3)\ \ \ \rm cx\!+\!d \equiv cy\!+\!d\,\Rightarrow\,c(x\!-\!y)\equiv 0\,\Rightarrow\,x\!-\!y\equiv 0\,$ by multiplying by $\rm\,c^{-1}$
$(3\Rightarrow 4)\ \ $ Every $1$-$1$ function on a finite set is onto (pigeonhole).
$(4\Rightarrow 1)\ \ \ \rm x\to cx\,$ is onto, so $\rm\,cd\equiv 1,\,$ some $\rm\,d,\,$ i.e. $\rm\, cd+km = 1,\,$ some $\rm\,k,\,$ so $\rm\gcd(c,m)=1$
See here for a conceptual proof of said Bezout identity for the gcd.