I developed an alternative to $(m^2-n^2), 2mn, (m^2+n^2)$ for the generation of Pythagorean triples by gleaning the results of 8 million spreadsheet formulas. Almost every time I show any part of my $formula$ in this venue, I seem to get downvoted. I can show how I developed it but that would just be a distraction. Here is my no-frills theorem. The answer I need addresses: "Is my proof flawed?"
Theorem: There is a Pythagorean triple for every pair of natural numbers (n,k). $$\forall n,k \in \mathbb{N}, \exists A,B,C\in \mathbb{N}:A^2+B^2=C^2 \iff A=(2n-1)^2+2(2n-1)k$$
Proof: Let $$A=(2n-1)^2+2(2n-1)k$$
Solving $A^2+B^2=C^2$ for $B$ and $C$, respectively, and substituting $A$, we find that $$B=2(2n-1)k+2 k^2$$ $$C=(2n-1)^2+2(2n-1)k+2k^2$$ We can then see that $$A^2=(2n-1)^4+4(2n-1)^3 k+4(2n-1)^2 k^2$$ $$B^2=4(2n-1)^2 k^2+8(2n-1) k^3+4k^4$$ $$C^2=(2n-1)^4+4(2n-1)^3 k+8(2n-1)^2 k^2+8(2n-1) k^3+4k^4$$ $$A^2+B^2=(2n-1)^4+4(2n-1)^3 k+8(2n-1)^2 k^2+8(2n-1) k^3+4k^4=C^2$$
$\therefore \forall n,k \in \mathbb{N},\exists A,B,C\in \mathbb{N}:A^2+B^2=C^2 \iff A=(2n-1)^2+2(2n-1)k\text{ } \blacksquare$
These generate all triples where GCD(A,B,C) is the square of an odd number. $\mathbf {\text{This includes all primitives}}$ and excludes all non-odd-square multiples of primitives. In the following sample of sets of triplets ($Set_1, Set_2, Set_3, \text{ and }Set_{25}$), we can also see that $\mathbf {(C-B) \text{ is the }n^{th} \text{odd square}}$. In the example: $C_1-B_1=1^2, C_2-B_2=3^2, C_3-B_3=5^2\text{ and }C_{25}-B_{25}=49^2=2401$.
$$\begin{array}{c|c|c|c|c|} \text{$Set_n$}& \text{$Triplet_1$} & \text{$Triplet_2$} & \text{$Triplet_3$} & \text{$Triplet_4$}\\ \hline \text{$Set_1$} & 3,4,5 & 5,12,13& 7,24,25& 9,40,41\\ \hline \text{$Set_2$} & 15,8,17 & 21,20,29 &27,36,45 &33,56,65\\ \hline \text{$Set_3$} & 35,12,37 & 45,28,53 &55,48,73 &65,72,97 \\ \hline \text{$Set_{25}$} &2499,100,2501 &2597,204,2605 &2695,312,2713 &2793,424,2825\\ \hline \end{array}$$