Show that
$\sum_{k=1}^{n}(5^{2k}-5^{2k-1})=\frac{5^{2n+1}-5}{6}$, for n = 1,2,3, ...
n = 1
$LHS = 5^2 - 5 = 20$
$RHS =\frac{ 5^{3} - 5}{6} = \frac{120}{6} = 20$
n = p
$LHS_{p} = (5^{2(1)}-5^{2(1)-1}) + (5^{2(2)}-5^{2(2)-1})+....+ (5^{2(p)}-5^{2(p)-1}) $
$RHS_{p} =\frac{ 5^{2(p)+1} - 5}{6} $
n = p + 1
$LHS_{p+1} = (5^{2(1)}-5^{2(1)-1}) + (5^{2(2)}-5^{2(2)-1})+....+ (5^{2(p)}-5^{2(p)-1})+ (5^{2(p+1)}-5^{2(p+1)-1}$
$RHS_{p+1} =\frac{ 5^{2(p+1)+1} - 5}{6} $
Show that: $ RHS_{p+1} = RHS_{p} + 5^{2(p+1)}-5^{2(p+1)-1} $
$\frac{ 5^{2(p+1)+1} - 5}{6} = \frac{ 5^{2(p)+1} - 5}{6} + 5^{2(p+1)}-5^{2(p+1)-1} $
And here's where I am stuck :)