Notation used in this answer:
$\ln(x)$ is the real-valued natural logarithm. It admits values $x\in (0,\infty)$
$\log(x)=\ln|x|+i\arg(x)$ is the complex-valued natural logarithm, which admits values $x\in\Bbb C\setminus \{0\}$
And $\arg(x)$ is the complex argument of $x$.
Answer:
Note that $1+x^n$ may be factored as
$$1+x^n=\prod_{k=0}^{n-1}(x-\lambda_{n,k})$$
Where $$\lambda_{n,k}=\exp\left[\frac{i\pi}n(2k+1)\right]$$
Hence
$$H(x)=\frac1{1+x^n}=\prod_{k=0}^{n-1}\frac1{x-\lambda_{n,k}}$$
Since we have now factored $H(x)$, we may do partial fractions, i.e. we may write
$$\prod_{k=0}^{n-1}\frac1{x-\lambda_{n,k}}=\sum_{k=0}^{n-1}\frac{\Gamma_{n,k}}{x-\lambda_{n,k}}$$
for some coefficients $\Gamma_{n,k}$. We find $\Gamma_{n,k}$ by multiplying both sides by $\prod_{j=0}^{n-1}(x-\lambda_{n,j})$ to get
$$1=\sum_{k=0}^{n-1}\left[\Gamma_{n,k}\prod_{j=0\\ j\neq k}^{n-1}(x-\lambda_{n,j})\right]$$
so for any $r\in\{0,1,\dots,n-1\}$ we plug in $x=\lambda_{n,r}$. The LHS stays the same, and every term on the RHS vanishes except for the term with $k=r$. Hence
$$1=\Gamma_{n,r}\prod_{j=0\\ j\neq r}^{n-1}(\lambda_{n,r}-\lambda_{n,j})$$
$$\Rightarrow \Gamma_{n,r}=\prod_{j=0\\ j\neq r}^{n-1}\frac1{\lambda_{n,r}-\lambda_{n,j}}$$
See this answer for a proof that
$$\Gamma_{n,k}=-\frac{\lambda_{n,k}}{n}$$
Hence we have
$$\frac1{1+x^n}=-\frac1n\sum_{k=0}\frac{\lambda_{n,k}}{x-\lambda_{n,k}}$$
Anyway, we may now integrate with our summation formula:
$$
\begin{align}
I_n&=\int_0^1\frac{dx}{1+x^n}\\
&=-\frac1n\int_0^1\sum_{k=0}^{n-1}\frac{\lambda_{n,k}dx}{x-\lambda_{n,k}}\\
&=-\frac1n\sum_{k=0}^{n-1}\lambda_{n,k}j_{n,k}\\
\end{align}$$
Where
$$j_{n,k}=\int_0^1\frac{dx}{x-\lambda_{n,k}}=\ln\sqrt{2-2\cos\frac{\pi(2k+1)}n}+i\arg(1-\lambda_{n,k})-\frac{i\pi}{n}(2k+n+1)$$
Which I can prove to you in full detail if you'd like.
The evaluation of $j_{n,k}$:
We have that $$\frac{d}{dz}\log z=\frac1z$$
So we immediately have that
$$j_{n,k}=\log(1-\lambda_{n,k})-\log(-\lambda_{n,k})$$
Then from $\log(x)=\ln|x|+i\arg x$ we have that
$$j_{n,k}=\ln|1-\lambda_{n,k}|+i\arg(1-\lambda_{n,k})-\ln|-\lambda_{n,k}|-i\arg(-\lambda_{n,k})$$
From Euler's formula we have $\lambda_{n,k}=\cos\frac{\pi(2k+1)}n+i\sin\frac{\pi(2k+1)}n$, so
$$|-\lambda_{n,k}|=|\lambda_{n,k}|=\sqrt{\cos^2\frac{\pi(2k+1)}n+\sin^2\frac{\pi(2k+1)}n}=1$$
Thus $\ln|-\lambda_{n,k}|=\ln1=0$, giving
$$j_{n,k}=\ln|1-\lambda_{n,k}|+i\arg(1-\lambda_{n,k})-i\arg(-\lambda_{n,k})$$
And since $\arg(xy)=\arg(x)+\arg(y)$ we have that
$$\arg(-\lambda_{n,k})=\arg(-1)+\arg(\lambda_{n,k})=\pi+\frac\pi{n}(2k+1)=\frac{\pi}{n}(2k+n+1)$$
Then we see that
$$\begin{align}
|1-\lambda_{n,k}|&=\sqrt{\left(1-\cos\frac{\pi(2k+1)}n\right)^2+\sin^2\frac{\pi(2k+1)}n}\\
&=\sqrt{1-2\cos\frac{\pi(2k+1)}n+\cos^2\frac{\pi(2k+1)}n+\sin^2\frac{\pi(2k+1)}n}\\
&=\sqrt{2-2\cos\frac{\pi(2k+1)}n}
\end{align}$$
So
$$j_{n,k}=\int_0^1\frac{dx}{x-\lambda_{n,k}}=\ln\sqrt{2-2\cos\frac{\pi(2k+1)}n}+i\arg(1-\lambda_{n,k})-\frac{i\pi}{n}(2k+n+1)$$