I have been able to show that for $n\in\Bbb N_{\geq2}$ $$\phi(n)=\int_0^1\frac{dx}{x^n+1}=\sum_{k=0}^{n-1}\Gamma_{n,k}\log\frac{\lambda_{n,k}-1}{\lambda_{n,k}}$$ Where $$\lambda_{n,k}=\exp\frac{i\pi(2k+1)}{n}$$ And $$\Gamma_{n,k}=\prod_{k\neq j=0}^{n-1}\frac1{\lambda_{n,k}-\lambda_{n,j}}$$ And I was wondering: how do we simplify $\Gamma_{n,k}$ to ease the manual calculation of $\phi(n)$ values. The integral is always real, so I am sure there is a major way we can simplify $\Gamma_{n,k}$, but I have been so far unable to find it. I do suspect however that the product $$P_n=\prod_{k=0}^{n-1}\Gamma_{n,k}$$ May play a significant role in finding the simplification I seek.
For those interested, a proof.
Note that $x^n+1$ bay be factored as $$x^n+1=\prod_{k=0}^{n-1}(x-\lambda_{n,k})$$ Hence $$\phi(n)=\int_0^1\prod_{k=0}^{n-1}\frac1{x-\lambda_{n,k}}dx$$ Then define $\Gamma_{n,k}$ by saying that $$\prod_{k=0}^{n-1}\frac1{x-\lambda_{n,k}}=\sum_{k=0}^{n-1}\frac{\Gamma_{n,k}}{x-\lambda_{n,k}}$$ Multiplying both sides by $\prod_{j=0}^{n-1}(x-\lambda_{n,j})$: $$1=\sum_{k=0}^{n-1}\frac{\Gamma_{n,k}}{x-\lambda_{n,k}}\prod_{j=0}^{n-1}(x-\lambda_{n,j})$$ $$1=\sum_{k=0}^{n-1}\Gamma_{n,k}\prod_{k\neq j=0}^{n-1}(x-\lambda_{n,j})$$ So for any integer $0\leq m\leq n-1$ we may plug in $x=\lambda_{n,m}$ and simplify to get $$\Gamma_{n,m}=\prod_{m\neq j=0}^{n-1}\frac1{\lambda_{n,m}-\lambda_{n,j}}$$ And our result follows directly.
Perhaps another motivation for easing manual calculation of this product would be that $$\sum_{k=0}^{\infty}\frac{(-1)^k}{nk+1}=\phi(n)$$ Which brings about a plethora of interesting closed forms.
Edit: A little progress
We define $$c_{n,j}=\operatorname{Re}\lambda_{n,j}=\cos\frac{\pi(2j+1)}{n}$$ And $$s_{n,j}=\operatorname{Im}\lambda_{n,j}=\sin\frac{\pi(2j+1)}{n}$$ So $$\log\frac{\lambda_{n,k}-1}{\lambda_{n,k}}=\log\left(1-\lambda_{n,k}^{-1}\right)=\log\left(1-c_{n,k}+is_{n,k}\right)$$ And we also see that $$\begin{align} \prod_{k\neq j=0}^{n-1}\frac1{\lambda_{n,k}-\lambda_{n,j}}&=\prod_{k\neq j=0}^{n-1}\frac1{e^{i\pi(2k+1)/n}-e^{i\pi(2j+1)/n}}\\ &=\prod_{k\neq j=0}^{n-1}\frac{e^{-i\pi(2k+1)/n}}{1-e^{i\pi(2j-2k)/n}}\\ &=e^{i(2k+1)(2-n)/n}\prod_{k\neq j=0}^{n-1}\frac12\left(1+i\cot\frac{\pi(j-k)}n\right)\\ \Gamma_{n,k}&=\frac{\lambda_{n,k}^{2-n}}{2^{n-2}}\prod_{k\neq j=0}^{n-1}\left(1+i\cot\frac{\pi(j-k)}n\right) \end{align}$$ But the remaining product I do not know how to deal with.