0

For $$\sum_{n=1}^{\infty}\ln(\frac{1}{n^2})$$ How do you tell if this series converges or diverges and which test do you use? I tried comparison test but it converges for me when it's supposed to diverge.

jimjim
  • 9,675
Random Student
  • 305
  • 2
  • 8

2 Answers2

4

Use the divergence test stating that a series is guaranteed to diverge if the series terms don’t go to zero in the limit.

If $\lim_{n\rightarrow \infty} a_n\neq 0\Rightarrow \sum_n^\infty a_n$ diverges.

$\lim_{n\rightarrow \infty}ln(\frac{1}{n^2})=-\infty\neq 0 \Rightarrow $ $\sum_{n=1}^{\infty}ln(\frac{1}{n^2})$ diverges.

Zack King
  • 129
3

$$\ln \left( \frac{1}{n^2} \right) = - 2 \ln(n)$$

Therefore the general term of your series does not tend to $0$, so your series diverges.

TheSilverDoe
  • 29,720