Let $ L, K: V \to V $ be linear maps that satisfy $L\circ K=1_V$. Show that
- (a) If $\ V $ is finite dimensional, then $ K\circ L=1_V$.
- (b) If $\ V $ is infinite dimensional give an example where $K\circ L \neq 1_V $.
I am having trouble seeing why finite or infinite dimensions apply in these cases.