This is to address one of the comments in how to derive the formula for the dihedral angles.
Given a tip of a tetrahedron, label the 3 edges attached to it as $1, 2, 3$ in such a way when you view the tip within the tetrahedron, the edges $1, 2, 3$ are arranged in counterclockwise manner.
Let $\vec{v}_1$, $\vec{v}_2$, $\vec{v}_3$ be the 3 unit vectors pointing away from the tip along the direction of edge $1, 2, 3$ respectively. Let us look at one of edge, say edge $2$. It is in contact with two faces.
One bounded by vectors $\vec{v}_1$ and $\vec{v}_2$. Another bounded by vectors
$\vec{v}_2$ and $\vec{v}_3$. The inward normal vectors of these two faces are given by:
$$
\vec{n}_{12} = \frac{\vec{v}_1 \times \vec{v}_2}{|\vec{v}_1 \times \vec{v}_2|}
\,\,\,\text{ and }\,\,\,
\vec{n}_{23} = \frac{\vec{v}_2 \times \vec{v}_3}{|\vec{v}_2 \times \vec{v}_3|}
$$
In terms of the normal vectors, the dihedral angle at edge $2$, $\phi_2$, satisfies:
$$\begin{align}
\cos(\phi_2) &= -\vec{n}_{12}\cdot\vec{n}_{23}\\
&= -\frac{( \vec{v}_1 \times \vec{v}_2 )\cdot(\vec{v}_2 \times \vec{v}_3)}{
|\vec{v}_1 \times \vec{v}_2||\vec{v}_2 \times \vec{v}_3|}\\
&= -\frac{(\vec{v}_1\cdot\vec{v}_2)(\vec{v}_2\cdot\vec{v}_3) - (\vec{v}_1\cdot\vec{v}_3)|\vec{v}_2|^2}{|\vec{v}_1 \times \vec{v}_2||\vec{v}_2 \times \vec{v}_3|}\\
&= \frac{\vec{v}_1\cdot\vec{v}_3 - (\vec{v}_1\cdot\vec{v}_2)(\vec{v}_2\cdot\vec{v}_3)}{|\vec{v}_1 \times \vec{v}_2||\vec{v}_2 \times \vec{v}_3|}\tag{*}
\end{align}$$
Let $\theta_{ij}$ be the vertex angle between edge $i$ and $j$. We can simplify R.H.S of (*) to get:
$$\cos(\phi_2) = \frac{\cos(\theta_{13}) - \cos(\theta_{12})\cos(\theta_{23})}{\sin(\theta_{12})\sin(\theta_{23})}$$
The formula of other dihedral angles can be derived in same manner.