FYI,
I noticed that
$\dfrac{a_{n+1}+a_{n-1}}{a_n}=6 \hspace{1cm}\forall n \gt1\tag1$
(unfortunately I could not prove it so far).
Using this recursion formula easy to determine the general formula of $a_{n+1}$.
Searching the general formula in the form
$a_n=c_1 r_1^n+c_2 r_2^n\tag2$
where $r_1, r_2$ are the roots of the following equation:
$r^2-6r+1=0\tag3$
So $\hspace{1cm}$ $r_1=3+2\sqrt2$ $\hspace{0,5cm}$ and $\hspace{0.5cm}$$r_2=3-2\sqrt2. $
$c_1, c_2$ can be determined from the initial values:
$a_1=1=c_1 (3+2\sqrt2)+c_2 (3-2\sqrt2)\tag4$
$a_2=5=c_1 (3+2\sqrt2)^2+c_2 (3-2\sqrt2)^2\tag5$
From (4) and (5) we get:
$c_1=\frac {1}{4+2\sqrt2}$ and $c_2=\frac {3+2\sqrt2}{4+2\sqrt2}$
Finally, based on (2):
$a_{n+1}=\Big(\frac {3+2\sqrt2}{4+2\sqrt2}\Big)^{n+1}+ \Big(\frac {3-2\sqrt2}{4+2\sqrt2}\Big)^{n}\tag5$
I have checked the first 15 items by Excel; the results are matches.