2

How to prove $t+\sum\limits_{n=1}^{t-1} 2(t-n)\cos(nx) = \dfrac{1-\cos(tx)}{1-\cos(x)}$

I am not so sure how to prove the about equation to be equal, should I use $\ 2\cos(x) = \exp(ix)+\exp(-ix)$ or identities for trigonometry, I tried both but not sure how to proceed.

rtybase
  • 16,907
Davidfufu
  • 41
  • 1

1 Answers1

1

Hint:

$$\sum_{n=1}^{t-1} \cos nx =\operatorname{Re}\Bigl(\sum_{n=1}^{t-1} \mathrm e^{inx}\Bigr), \qquad \sum_{n=1}^{t-1} n\cos nx =\sum_{n=1}^{t-1}(\sin nx)'=\operatorname{Im}\Bigl(\sum_{n=1}^{t-1} \mathrm e^{inx}\Bigr)'$$ so it comes down to computing the sum of consecutive terms of a geometric series.

Bernard
  • 175,478