Let $a, b, c, d$ be four numbers such that $a + b = c + d$ and $a^3 + b^3 = c^3 + d^3$. Prove that $a^{2009}+b^{2009}=c^{2009}+d^{2009}$.
I've got $a^2+b^2-ab=c^2+d^2-cd$. I tried squaring or cubing it repeatedly but I didn't get what I wanted. Now how do I proceed?