If $a+b=c+d$, and $a^3+b^3=c^3+d^3$, then prove that: $$a^{2011}+b^{2011} = c^{2011}+d^{2011}$$
Approach:
From $$a+b=c+d$$ We have: $$(a+b)^2 = (c+d)^2$$ $$a^2+b^2+2ab = c^2+d^2+2cd .... (1)$$ Similarly, we have: $$a^2+b^2-ab = c^2+d^2-cd ....(2)$$ from $a^3+b^3=c^3+d^3$
$(1)-(2)$, gives us $ab=cd$
I wanted to try the below formula explicitly for $n=$ odd, but it isn't working out well.
$$a^n+b^n= (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2-a^{n-4}b^3+.....+a^2b^{n-3}-ab^{n-2}+b^{n-1})$$
Where $n$ is odd.
I got $a-b=c-d$ by using the above information, but I am unable to take $a-b$ common due to the last term as follows:
$$a^n+b^n= (a+b)\ \ \ [ \ \ a^{n-2}(a-b) + a^{n-4}b^2(a-b)+ a^{n-6}b^4(a-b).....+ab^{n-3}(a-b)+b^{n-1}]$$
I want to generalize the result for all odd numbers, but I'm unable to do so. Any help or hints would be most appreciated! Thanks.