$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\left.\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
\pars{4n + 1}\pars{4n + 3}\ldots\bracks{4n + \pars{4k - 3}}}
\,\right\vert_{\ k\ \geq\ 1}} =
\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
\prod_{\ell = 0}^{2k - 2}\pars{4n + 2\ell + 1}}
\\[5mm] = &\
\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
2^{2k - 1}\prod_{\ell = 0}^{2k - 2}\pars{\ell + 2n + 1/2}} =
{1 \over 2^{2k - 1}}\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
\pars{2n + 1/2}^{\overline{2k - 1}}}
\\[5mm] = &\
{1 \over 2^{2k - 1}}\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
\Gamma\pars{2n + 2k - 1/2}/\Gamma\pars{2n + 1/2}}
\\[5mm] = &\
{1 \over 2^{2k - 1}\pars{2k - 2}!}\sum_{n = 0}^{\infty}
{4n \choose 2n}32^{-n}\,
{\Gamma\pars{2n + 1/2}\Gamma\pars{2k - 1} \over
\Gamma\pars{2n + 2k - 1/2}}
\\[5mm] = &\
{1 \over 2^{2k - 1}\pars{2k - 2}!}\sum_{n = 0}^{\infty}
{4n \choose 2n}32^{-n}\int_{0}^{1}t^{2n - 1/2}\pars{1 - t}^{2k - 2}\dd t
\\[5mm] = &\
{1 \over 2^{2k - 1}\pars{2k - 2}!}\int_{0}^{1}t^{-1/2}\pars{1 - t}^{2k - 2}\sum_{n = 0}^{\infty}
{4n \choose 2n}32^{-n}\, t^{2n}\dd t
\end{align}
Note that
$\ds{{4n \choose 2n} = {-1/2 \choose 2n}16^{n}}$
Then,
\begin{align}
&\bbox[10px,#ffd]{\left.\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
\pars{4n + 1}\pars{4n + 3}\ldots\bracks{4n + \pars{4k - 3}}}
\,\right\vert_{\ k\ \geq\ 1}}
\\[5mm] = &\
{1 \over 2^{2k - 1}\pars{2k - 2}!}\int_{0}^{1}t^{-1/2}\pars{1 - t}^{2k - 2}\sum_{n = 0}^{\infty}
{-1/2 \choose 2n}\,\pars{t \over \root{2}}^{2n}\dd t
\\[5mm] = &\
{1 \over 2^{2k - 1}\pars{2k - 2}!}\int_{0}^{1}t^{-1/2}
\pars{1 - t}^{2k - 2}\sum_{n = 0}^{\infty}
{-1/2 \choose n}\,\pars{t \over \root{2}}^{n}
\,{1 + \pars{-1}^{n} \over 2}\dd t
\\[5mm] = &\
{1 \over 2^{2k}\pars{2k - 2}!}\left[%
\int_{0}^{1}t^{-1/2}\pars{1 - t}^{2k - 2}\bracks{1 -\pars{-2^{-1/2}}t}^{-1/2}\dd t\right.
\\[2mm] & \phantom{{1 \over 2^{2k}\pars{2k - 2}!}}+
\left.\int_{0}^{1}t^{-1/2}\pars{1 - t}^{2k - 2}
\pars{1 -2^{-1/2}t}^{-1/2}\dd t\right]
\end{align}
The remaining integrals are
Euler Type $\ds{_{2}\mrm{F}_{1}}$ Hypergeometric Function.
Then,
\begin{align}
&\bbox[10px,#ffd]{\left.\sum_{n = 0}^{\infty}
{32^{-n}{4n \choose 2n} \over
\pars{4n + 1}\pars{4n + 3}\ldots\bracks{4n + \pars{4k - 3}}}
\,\right\vert_{\ k\ \geq\ 1}}
\\[5mm] = &\ \bbx{%
\root{\pi}\,{\mbox{}_{2}\mrm{F}_{1}\pars{1/2,1/2;2k - 2,-\root{2}/2} +
\mbox{}_{2}\mrm{F}_{1}\pars{1/2,1/2;2k - 2,\root{2}/2} \over
2^{2k}\Gamma\pars{2k - 1/2}}}
\end{align}