Real $\boldsymbol{\alpha}$
The log-convexity of the Gamma function is shown in this answer.
Suppose that $0\le\alpha\le k\in\mathbb{Z}$, then using the recurrence relation for $\Gamma$,
$$
\begin{align}
\Gamma(n+\alpha)
&\le\Gamma(n)^{1-\alpha/k}\,\Gamma(n+k)^{\alpha/k}\\
&\le\Gamma(n)^{1-\alpha/k}\left(\Gamma(n)\,(n+k-1)^k\right)^{\alpha/k}\\
&=\Gamma(n)\,(n+k-1)^\alpha\tag1
\end{align}
$$
and
$$
\begin{align}
\Gamma(n)
&\le\Gamma(n+\alpha-k)^{\alpha/k}\Gamma(n+\alpha)^{1-\alpha/k}\\[6pt]
&\le\left(\frac{\Gamma(n+\alpha)}{(n+\alpha-k)^k}\right)^{\alpha/k}\Gamma(n+\alpha)^{1-\alpha/k}\\
&=\frac{\Gamma(n+\alpha)}{(n+\alpha-k)^\alpha}\tag2
\end{align}
$$
Then we have
$$
\left(\frac{n+\alpha-k}{n}\right)^\alpha
\le\frac{\Gamma(n+\alpha)}{\Gamma(n)\,n^\alpha}
\le\left(\frac{n+k-1}{n}\right)^\alpha\tag3
$$
and by the Squeeze Theorem, for $\alpha\ge0$,
$$
\lim_{n\to\infty}\frac{\Gamma(n+\alpha)}{\Gamma(n)\,n^\alpha}=1\tag4
$$
Furthermore,
$$
\begin{align}
\Gamma(n)
&\le\Gamma(n-\alpha)^{1-\alpha/k}\Gamma(n-\alpha+k)^{\alpha/k}\\
&\le\Gamma(n-\alpha)^{1-\alpha/k}\left(\Gamma(n-\alpha)(n-\alpha+k-1)^k\right)^{\alpha/k}\\
&=\Gamma(n-\alpha)(n-\alpha+k-1)^\alpha\tag5
\end{align}
$$
and
$$
\begin{align}
\Gamma(n-\alpha)
&\le\Gamma(n)^{1-\alpha/k}\Gamma(n-k)^{\alpha/k}\\
&\le\Gamma(n)^{1-\alpha/k}\left(\frac{\Gamma(n)}{(n-k)^k}\right)^{\alpha/k}\\
&=\frac{\Gamma(n)}{(n-k)^\alpha}\tag6
\end{align}
$$
Therefore,
$$
\left(\frac{n-\alpha+k-1}{n}\right)^{-\alpha}
\le\frac{\Gamma(n-\alpha)}{\Gamma(n)\,n^{-\alpha}}
\le\left(\frac{n-k}{n}\right)^{-\alpha}\tag7
$$
and by the Squeeze Theorem, for $\alpha\ge0$,
$$
\lim_{n\to\infty}\frac{\Gamma(n-\alpha)}{\Gamma(n)\,n^{-\alpha}}=1\tag8
$$
Complex $\boldsymbol{\alpha}$
Unfortunately, I have not found a way to make the log-convexity argument that works for $\alpha\in\mathbb{R}$ work for $\alpha\in \mathbb{C}$. About the best I can see, is to use Stirling's Approximation.
$$
\Gamma(n)\sim\sqrt{\frac{2\pi}n}\frac{n^n}{e^n}\tag9
$$
Applying $(9)$ to $\Gamma(n+\alpha)$ and $\Gamma(n)$, we get
$$
\frac{\Gamma(n+\alpha)}{\Gamma(n)\,n^\alpha}\sim\sqrt{\frac{n}{n+\alpha}}\frac{\left(1+\frac\alpha{n}\right)^{n+\alpha}}{e^\alpha}\tag{10}
$$
which yields
$$
\lim_{n\to\infty}\frac{\Gamma(n+\alpha)}{\Gamma(n)\,n^\alpha}=1\tag{11}
$$