Evaluate $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-3x^2-2 \sqrt 2 xy - 3y^2\right) \, \mathrm dx\,\mathrm dy$$
I first evaluate
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[-3\bigl(x^2+ y^2\bigr)\right] \,\mathrm dx\,\mathrm dy$$
using polar coordinates, which evaluates to $\pi/3$. But I find difficulty to evaluate the double integral $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-2 \sqrt 2 xy\right) \, \mathrm dx\,\mathrm dy$$ Would anybody please help me finding it out?