Let $\sum\limits_{k=1}^\infty a_n$ be a convergent series where $a_n\geq0$ and $(a_n)$ is a monotone decreasing sequence prove that the series $\sum\limits_{k=1}^\infty n(a_n-a_{n+1})$ also converges.
What I tried :
Let $(A_n)$ be the sequence of partial sums of the series $\sum\limits_{k=1}^\infty a_n$ and $(B_n)$ be the sequence of partial sums of the series $\sum\limits_{k=1}^\infty n(a_n-a_{n+1})$.
Since $A_n=\sum\limits_{k=1}^n a_k$ and $B_n=\sum\limits_{k=1}^n k(a_k-a_{k+1})$ we get that:
\begin{align} B_n&=A_n-na_{n+1}\\ &=(a_1-a_{n+1})+(a_2-a_{n+1})+...+(a_n-a_{n+1})\\ &>(a_1-a_n)+(a_2-a_n)+...+(a_n-a_n)\\ &=B_{n-1} \end{align}
we see that $(B_n)$ is a monotone increasing sequence $...(1)$
and
$B_n=A_n-na_{n+1}<A_n$ this implies that the sequence $(B_n)$ is bounded above ...(2)
Therefore (from (1) and (2)) the sequence $(B_n)$ converges so the series $\sum\limits_{k=1}^\infty n(a_n-a_{n+1})$ also converges
Is my proof correct?