16

I just received the book "single digits - In praise of Small Numbers" by Marc Chamberland.

In this book, he gives an interesting integral

$$\displaystyle \int_0^\infty \dfrac{\sin x}{x} = \dfrac{\pi}{2}$$

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3} = \dfrac{\pi}{2}$$

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3}\dfrac{\sin(x/5)}{x/5} = \dfrac{\pi}{2}$$

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3}\dfrac{\sin(x/5)}{x/5}\dfrac{\sin(x/7)}{x/7} = \dfrac{\pi}{2}$$

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3}\dfrac{\sin(x/5)}{x/5}\dfrac{\sin(x/7)}{x/7} \dfrac{\sin(x/9)}{x/9}= \dfrac{\pi}{2}$$

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3}\dfrac{\sin(x/5)}{x/5}\dfrac{\sin(x/7)}{x/7} \dfrac{\sin(x/9)}{x/9}\dfrac{\sin(x/11)}{x/11}= \dfrac{\pi}{2}$$

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3}\dfrac{\sin(x/5)}{x/5}\dfrac{\sin(x/7)}{x/7} \dfrac{\sin(x/9)}{x/9}\dfrac{\sin(x/11)}{x/11}\dfrac{\sin(x/13)}{x/13} = \dfrac{\pi}{2}$$

At this point, it is tempting to speculate that this pattern goes on forever, but we run into problems and this is another example of jumping to conclusions too soon.

$$\displaystyle \int_0^\infty \dfrac{\sin(x)}{x}\dfrac{\sin(x/3)}{x/3}\dfrac{\sin(x/5)}{x/5}\dfrac{\sin(x/7)}{x/7} \dfrac{\sin(x/9)}{x/9}\dfrac{\sin(x/11)}{x/11}\dfrac{\sin(x/13)}{x/13}\dfrac{\sin(x/15)}{x/15} = \dfrac{467807924713440738696537864469 \pi }{935615849440640907310521750000}$$

I calculated the next several and they are nice approximations to the results above, but not that result

  • $$\dfrac{17708695183056190642497315530628422295569865119 \pi }{35417390788301195294898352987527510935040000000}$$
  • $$\dfrac{8096799621940897567828686854312535486311061114550605367511653 \pi }{16193600755941299921751838065715269433640150152124763150000000}$$
  • $$\dfrac{2051563935160591194337436768610392837217226815379395891838337765936509 \pi }{4103129007448718822870650414175026723860506854636748901313920000000000}$$

  • $$\dfrac{37193167701690492344448194533283488902041049236760438302965167901187323851384840067287863 \pi }{74386376780038719358535506076609218130495936637120586884474907521986965251324791250000000}$$

He states "The explanation for this change is a bit technical, but the critical reason is that $\dfrac{1}{3} + \dfrac{1}{5} + \ldots + \dfrac{1}{13} \lt 1$, whereas, adding the next term $\frac{1}{15}$ pushes the sum over $1$, making a difference in the value of the integral."

He does not mention the researcher, but I'd like to know what is a "bit technical" explanation or if there is a more analytical or mathematical rationale or a reference to the research?

Moo
  • 11,311

1 Answers1

8

Sort of an answer.

These integrals are known as the Borwein Integrals, found by David and Johnathan Borwein in Some remarkable properties of sinc and related integrals (2001).

According to wikipedia, if we have a sequence of nonzero reals $a_0,a_1,...,a_n$, we may evaluate $$\int_0^\infty \prod_{k=0}^{n}\frac{\sin a_k x}{a_kx}dx=\frac{\pi}{2a_0}C_n,$$ where $$C_n=\frac{1}{2^nn!\prod_{k=1}^{n}a_k}\sum_{\gamma\in\{\pm1\}^n}\varepsilon_\gamma b_\gamma^n\text{ sgn}(b_\gamma),$$ $$\gamma=(\gamma_1,\gamma_2,...,\gamma_n)\in\{-1,1\}^n,\qquad \varepsilon_\gamma=\gamma_1\gamma_2\cdots\gamma_n,$$ and $$b_\gamma=a_0+a_1\gamma_1+a_2\gamma_2+\dots+a_n\gamma_n.$$ Then, apparently, when $a_0>|a_1|+|a_2|+\dots+|a_n|,$ we have $C_n=1$. I am not sure how this follows from the explicit evaluation, but I'll update when I find out.

Anyway, taking $a_k=\frac1{2k+1}$ and $J_n=\int_0^\infty\prod_{k=0}^{n}\sin(a_kx)/(a_kx)\, dx$, we get $$J_1=\frac\pi2\cdot\frac{1}{2\cdot\tfrac13}\left(\frac43-\frac23\right)=\frac\pi2,$$ $$J_2=\frac\pi2\cdot\frac1{2^2\cdot2\cdot\tfrac13\tfrac15}\left(\left(\frac{23}{15}\right)^2-\left(\frac{17}{15}\right)^2-\left(\frac{13}{15}\right)^2+\left(\frac{7}{15}\right)^2\right)=\frac\pi2,$$ and so on. As you can see, there are $2^n$ terms for $J_n$, and I don't wanna have to write out anymore of them.

Finally, when $n=7$, we have $$\sum_{k=1}^{7}|a_k|=\sum_{k=1}^{7}\frac1{2k+1}=\frac{46207}{45045}\approx 1.0218>a_0=1,$$ and indeed, $$J_7\approx \frac\pi2-2.31\cdot10^{-11}.$$

clathratus
  • 17,161