The Singular Value Decomposition
The singular value decomposition of a matrix is
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cccc|cc}
\sigma_{1} & 0 & \dots & & & \dots & 0 \\
0 & \sigma_{2} \\
\vdots && \ddots \\
& & & \sigma_{\rho} \\\hline
& & & & 0 & \\
\vdots &&&&&\ddots \\
0 & & & & & & 0 \\
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
& =
% U
\left[ \begin{array}{cccccccc}
\color{blue}{u_{1}} & \dots & \color{blue}{u_{\rho}} & \color{red}{u_{\rho+1}} & \dots & \color{red}{u_{n}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{v_{1}^{*}} \\
\vdots \\
\color{blue}{v_{\rho}^{*}} \\
\color{red}{v_{\rho+1}^{*}} \\
\vdots \\
\color{red}{v_{n}^{*}}
\end{array} \right]
%
\end{align}
$$
The color blue denotes range space objects; the color red, null space.
The connection to the fundamental subspaces is direct:
$$
\begin{array}{ll}
%
column \ vectors & span \\\hline
%
\color{blue}{u_{1}} \dots \color{blue}{u_{\rho}} &
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} \\
%
\color{blue}{v_{1}} \dots \color{blue}{v_{\rho}} &
\color{blue}{\mathcal{R} \left( \mathbf{A}^{*} \right)} \\
%
\color{red}{u_{\rho+1}} \dots \color{red}{u_{m}} &
\color{red}{\mathcal{N} \left( \mathbf{A}^{*} \right)} \\
%
\color{red}{v_{\rho+1}} \dots \color{red}{v_{n}} &
\color{red}{\mathcal{N} \left( \mathbf{A} \right)} \\
%
\end{array}
$$
The vectors $\color{blue}{\{u_{k}\}}_{k=1}^{\rho}$, the column vectors of $\color{blue}{\mathbf{U}_{\mathcal{R}}}$, represent an orthonormal span of the row space. Similarly, the vectors $\color{blue}{\{v_{k}\}}_{k=1}^{\rho}$ span the column space.
The Moore-Penrose Pseudoinverse Matrix
The Moore-Penrose pseudoinverse matrix arises naturally (Singular value decomposition proof
) from using the SVD to solve the least square problem:
$$
\begin{align}
\mathbf{A}^{+} &= \mathbf{V} \, \Sigma^{+} \mathbf{U}^{*} \\
%
&=
% V
\left[ \begin{array}{cc}
\color{blue}{\mathbf{V}_{\mathcal{R}}} &
\color{red}{\mathbf{V}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
%
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{U}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
\end{align}
%
$$
The Fundamental Projectors
The four fundamental unitary projectors are
$$
\begin{align}
%
\mathbf{P}_\color{blue}{\mathcal{R}\left( \mathbf{A} \right)} &= \mathbf{A}\mathbf{A}^{\dagger} &
%
\mathbf{P}_\color{red}{\mathcal{N}\left( \mathbf{A}^{*} \right)} &=
\mathbf{I}_{m} - \mathbf{A}\mathbf{A}^{\dagger} \\
%
\mathbf{P}_\color{blue}{\mathcal{R}\left( \mathbf{A}^{*} \right)} &= \mathbf{A}^{\dagger}\mathbf{A}
&
%
\mathbf{P}_\color{red}{\mathcal{N}\left( \mathbf{A} \right)} &= \mathbf{I}_{n} - \mathbf{A}^{\dagger}\mathbf{A} \\
%
\end{align}
$$
Projection onto $\color{blue}{\mathcal{R}\left( \mathbf{A} \right)}$
Using the decomposition for the target matrix and the concomitant pseudoinverse produces
$$\mathbf{P}_\color{blue}{\mathcal{R}\left( \mathbf{A} \right)} = \mathbf{A}\mathbf{A}^{\dagger} = \left(
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
\left[ \begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right]
\right)
\left(
\left[ \begin{array}{cc}
\color{blue}{\mathbf{V}_{\mathcal{R}}} &
\color{red}{\mathbf{V}_{\mathcal{N}}}
\end{array} \right)
\left[ \begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{U}_{\mathcal{N}}}^{*}
\end{array} \right]
\right)
=
\color{blue}{\mathbf{U}_{\mathcal{R}}}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*}
$$
The columns of the matrix $\color{blue}{\mathbf{U}}$ are an orthogonal span of the column space of $\mathbf{A}$.
Projection onto $\color{blue}{\mathcal{R}\left( \mathbf{A}^{*} \right)}$
Similar machinations will reveal
$$
\mathbf{P}_\color{blue}{\mathcal{R}\left( \mathbf{A}^{*} \right)} =
\color{blue}{\mathbf{V}_{\mathcal{R}}}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
$$