1

$$\lim_{n\to \infty}\sqrt[n]{\frac{10n!}{n!^{10}}}$$

So we can solve $\lim_{n\to \infty}\frac{a_{n+1}}{a_n}$

$$\lim_{n\to \infty}\frac{a_{n+1}}{a_n}=\lim_{n\to \infty}\frac{10(n+1)}{(n+1)^{10}}=0$$

Which is incorrect, where did I get it wrong?

DeepSea
  • 77,651
newhere
  • 3,115

2 Answers2

2

We have that

$$\frac{a_{n+1}}{a_n}=\frac{10(n+1)!}{(n+1)!^{10}}\frac{n!^{10}}{10n!}=\frac{(n+1)}{(n+1)^{10}}\to 0$$

then using "ratio-root" criterion

$$\sqrt[n] {a_n} \to 0$$

user
  • 154,566
2

More generally, to get $\lim_{n\to \infty}\sqrt[n]{\dfrac{(an)!}{n!^{a}}} $, use the lazy person's "stirling" approximation $\dfrac{(n!)^{1/n}}{n} \to \dfrac1{e} $.

Then, noting that the "$a$" multiplies $n$ before taking the factorial,

$\begin{array}\\ \sqrt[n]{\dfrac{(an)!}{n!^{a}}} &=\dfrac{(an)!^{1/n}}{n!^{a/n}}\\ &=\dfrac{((an)!^{1/(an)})^{a}}{(n!^{1/n})^a}\\ &\to\dfrac{(an/e)^{a}}{(n/e)^a}\\ &\to a^a\\ \end{array} $

When $a=10$ the result is $10^{10}$.

Note that the denominator inside the root is $(10n)!$, not $10(n!)$. In that case, the limit is zero.

marty cohen
  • 107,799