This is a standard "vieta jumping" problem.
Manipulations yield $( \alpha ab-1 )|(\alpha a^{2}-1)^{2}$ implies $(\alpha ab - 1)|(\alpha a^2b - b)^2$ and thus $(\alpha ab - 1)|(a-b)^2$.
Let's assume now that there exist some postive integers $ a\neq b$ so that $ (\alpha ab-1)|(a-b)^{2}$. Let $\displaystyle k = \frac{(a-b)^{2}}{\alpha ab-1} > 0$.
Let $ S=\{ (a,b): a,b\in \mathbb{Z}^{+}, (a-b)^{2}/(\alpha ab-1)=k\}$. Since $ |S| \geq 1$, there is a pair $ (a,b)\in S$ which minimizes $ a+b$ over all $ (a,b)\in S$. WLOG assume that $a > b$. Consider now the quadratic equation
$$ \frac{(x-b)^{2}}{\alpha xb-1}=k \Leftrightarrow x^{2}-x(2b+bk \alpha)+b^{2}+k=0 $$
which has roots $ x_{1}=a$ and $\displaystyle x_{2}=2b+\alpha kb-a= \frac{b^{2}+k}{a}$ (from Vieta). This implies that $ x_{2}\in \mathbb{Z}^{+}$, so $ (x_{2}, b)\in S$. By the minimality of $a+b$, we however have $ x_{2}\geq a$, ie $\displaystyle \frac{b^{2}+k}{a} \geq a$ and therefore $ k\geq a^{2}-b^{2}$.
Thus, $\frac{(a-b)^2}{\alpha ab - 1} =k \geq a^{2}-b^{2}$ and hence $ a-b\geq (a+b)(\alpha ab-1)$, clearly impossible for $a,b \in\mathbb{Z}^{+}$. Thus if the divisibility condition holds then $a=b$.