Hint $\ $ Counterexamples abound: choose a modulus $\rm\,m\,$ so that $\rm\:mod\ m\!:\ a\equiv b\:$ and $\rm\:4a^2\pm1\equiv 0.\:$ Then $\rm\:4ab\pm1\equiv 4a^2\pm1\equiv 0,\:$ hence $\rm\,m\,|\,4ab\pm1,4a^2\pm1.\:$
E.g. for any $\rm\:a,\,$ let $\rm\,m>1\,$ be a divisor of $\rm\,4a^2\pm1,\,$ $\rm\,b = a\!+\!m,\:$ e.g. $\rm\:a=1,\: m=4\!\pm\!1,\: b = 5\!\pm\!1.$
Remark $\ \ $ Perhaps it will prove a bit instructive to present how I derived the counterexamples. This will yield a precise criterion for coprimality.
$$\rm\begin{eqnarray}\rm (4a^2\!+\!1,\,4ab\!+\!1) &=&\rm (4a^2\!+\!1,\,4a(b\!-\!a)\!-\!(4a^2\!+\!1))\\ &=&\rm (4a^2\!+\!1,\,4a(b\!-\!a))\\ &=&\rm (4a^2\!+\!1,\,b\!-\!a)\ \ via\ \ \ (4a^2\!+\!1,4a) = 1\ \text{ and Euclid's Lemma}\end{eqnarray}$$
This implies the following general criterion
$$\rm (4a^2\!+\!1,(4ab\!+\!1)^2) = 1\ \iff\ (4a^2\!+\!1,\,b\!-\!a) = 1$$
Hence the only counterexamples arise as above: $\rm\ \ 1 < m\,|\,4a^2\!+\!1,\,b\!-\!a$.
Alternatively, one could employ the follow Brahmagupta sum of squares identity
$$\rm (1+4a^2)(1+4b^2)\ =\ (1+4ab)^2 + 4\, (a-b)^2 $$
which should lead to a nice viewpoint in terms of Gaussian integer arithmetic.