It has an answer here, but I'd like to know where my solution went wrong.
$$\lim_{x\to 0} \left( \frac{1+x\cdot2^x}{1+x\cdot3^x} \right)^{\frac{1}{x^2}} $$ $$\lim_{x\to 0} \left( \frac{1+x\cdot2^x +x\cdot 3^x-x\cdot 3^x}{1+x\cdot3^x} \right)^\frac{1}{x^2} $$ $$\lim_{x\to 0} \left( 1 + \frac{x\cdot2^x-x\cdot 3^x}{1+x\cdot3^x} \right)^\frac{1}{x^2} $$ $$\lim_{x\to 0} \left( 1 + \frac{x\cdot2^x-x\cdot 3^x}{1+x\cdot3^x} \right)^{\frac{1}{x^2}\cdot \frac{1+x\cdot 3^x}{x\cdot2^x-x\cdot 3^x}\cdot\frac{x\cdot2^x-x\cdot 3^x}{1+x\cdot3^x}} $$ $$\lim_{x\to 0} e^{\frac{1}{x^2}\cdot \frac{x\cdot2^x-x\cdot 3^x}{1+x\cdot3^x}} $$ $$\lim_{x\to 0} e^{\frac{1}{x}\cdot \frac{2^x-3^x}{1+x\cdot3^x}} $$ $$\lim_{x\to 0} e^{\frac{1}{x}\cdot \frac{(1+1)^x-(2+1)^x}{1+x\cdot3^x}} $$ $$\lim_{x\to 0} e^{\frac{1}{x}\cdot \frac{1+x+o(x)-1-x2-o(x)}{1+x\cdot3^x}} $$ $$\lim_{x\to 0} e^{\frac{-1}{1+x\cdot3^x}} $$ $$e^{-1}$$ The answer in the book is $\frac{2}{3}$.