I recently stumbled upon the following reduction formula on the internet which I am so far unable to prove. $$I_n=\int\frac{\mathrm{d}x}{(ax^2+b)^n}\\I_n=\frac{x}{2b(n-1)(ax^2+b)^{n-1}}+\frac{2n-3}{2b(n-1)}I_{n-1}$$ I tried the substitution $x=\sqrt{\frac ba}t$, and it gave me $$I_n=\frac{b^{1/2-n}}{a^{1/2}}\int\frac{\mathrm{d}t}{(t^2+1)^n}$$ To which I applied $t=\tan u$: $$I_n=\frac{b^{1/2-n}}{a^{1/2}}\int\cot^{n-1}u\ \mathrm{d}u$$ I then used the $\cot^nu$ reduction formula to find $$I_n=\frac{-b^{1/2-n}}{a^{1/2}}\bigg(\frac{\cot^{n-2}u}{n-2}+\int\cot^{n-3}u\ \mathrm{d}u\bigg)$$ $$I_n=\frac{-b^{1/2-n}\cot^{n-2}u}{a^{1/2}(n-2)}-b^2I_{n-2}$$ Which is a reduction formula, but not the reduction formula.
Could someone provide a derivation of the reduction formula? Thanks.