4

After struggling with $I_2,I_3$ in the post, I dare to tackle $I_4$ now.

We first rewrite the integral $$I_{4}=\int\left(\frac{\cos \theta}{1+\sin ^{2} \theta}\right)^{4} d \theta =\int \frac{\sec ^{2} \theta}{\left(\sec ^{2} \theta+\tan ^{2} \theta\right)^{4}} d(\tan \theta) $$

Letting $x=\tan \theta$ converts $$ \begin{aligned}I_4 &=\int \frac{1+x^{2}}{\left(2 x^{2}+1\right)^{4}} d t \\ &=\frac{1}{2}\left[\int \frac{d t}{\left(2 x^{2}+1\right)^{3}}+\int \frac{d t}{\left(2 x^{2}+1\right)^{4}}\right] \end{aligned} $$

By my post, we have an elegant reduction formula:

$$ \begin{aligned} J_{n} &=\int \frac{d x}{\left(a x^{2}+b\right)^{n}}, \text { where } n \geqslant 2 \\ &=\frac{x}{2 b(n-1)\left(a x^{2}+b\right)^{n-1}}+\frac{2 n-3}{2 b(n-1)} J_{n-1} \end{aligned} $$

When $a=2$ and $b=1,$ $$ J_{n}=\frac{x}{2(n-1)\left(2 x^{2}+1\right)^{n-1}}+\frac{2 n-3}{2(n-1)} J_{n-1} $$

Hence $$ I_{4}=\frac{1}{2}\left(J_{3}+J_{4}\right) $$ Let’s start with $$J_1= \int \frac{d x}{2 x^{2}+1}=\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2} x)+C_1 $$

$$ J_{2}=\frac{x}{2\left(2 x^{2}+1\right)}+\frac{1}{2} J_{1}=\frac{x}{2\left(2 x^{2}+1\right)}+\frac{1}{2 \sqrt{2}} \tan ^{-1}(\sqrt{2} x)+C_2 $$

$$ \begin{aligned} J_{3} &=\frac{x}{4\left(2 x^{2}+1\right)^{2}}+\frac{3}{4} J_{2} \\ &=\frac{x}{4\left(2 x^{2}+1\right)^{2}}+\frac{3 x}{8\left(2 x^{2}+1\right)}+\frac{3}{8 \sqrt{2}} \tan ^{-1}(\sqrt{2} x)+C_3 \end{aligned} $$

$$ J_{4}=\frac{x}{6\left(2 x^{2}+1\right)^{3}}+\frac{5 x}{24\left(2 x^{2}+1\right)^{2}}+\frac{5 x}{16\left(2 x^{2}+1\right)}+\frac{5}{16 \sqrt{2}} \tan ^{-1}(\sqrt2 x)+C_4 $$

Now we can conclude that $$ \begin{array}{c} \displaystyle I_{4}=\frac{\tan \theta}{96}\left[\frac{8}{\left(2 \tan ^{2} \theta+1\right)^{3}}+\frac{22}{\left(2 \tan ^{2} \theta+1\right)^{2}}+\frac{33}{2 \tan ^{2} \theta+1}\right] +\frac{11}{32 \sqrt{2}} \tan ^{-1}(\sqrt{2} \tan \theta)+C \end{array} $$

Please let me know if there is any mistake. Can we go further?

Wish you all a happy and healthy New Year 2022!

Lai
  • 20,421
  • Nice solution. (+1) – Laxmi Narayan Bhandari Jan 05 '22 at 10:41
  • Thank you for your appreciation. – Lai Jan 05 '22 at 10:46
  • 2
    I’m a bit late but I think you made a slight mistake at the final conclusion of $I_4$. I got $I_4 = \frac{\tan \theta}{96} \left( \frac{8}{(2\tan^2 \theta+1)^3}+\frac{\textbf{22}}{(2\tan^2 \theta+1)^2}+\frac{33}{2\tan^2 \theta+1} \right)+\frac{11}{32\sqrt{2}} \tan^{-1} (\sqrt{2}\tan \theta)$. As a challenge, according to Mathematica $I_s = \tan(x)\left(\sin^2(x)+1\right)^s\cos^2(x)^{\frac{1}{2}-\frac{s}{2}}F_1\left(\frac{1}{2};\frac{1}{2}-\frac{s}{2},s;\frac{3}{2};\sin^2(x),-\sin^2(x)\right)(\sec(x)+\sin(x)\tan(x))^{-s}$ where $F_1$ is the Appell $F_1$ hypergeometric function. – KStarGamer Mar 02 '22 at 19:32
  • Wolfy says integral(cos(θ)/(1 + sin^2(θ)))^4 dθ = (-3006 sin(2 θ) + 552 sin(4 θ) - 38 sin(6 θ) + 132 sqrt(2) (cos(2 θ) - 3)^3 tan^(-1)(sqrt(2) tan(θ)))/(768 (cos(2 θ) - 3)^3) + constant – marty cohen Mar 30 '22 at 17:03
  • Mr KStarGamer, you are right. Thank you very much! Fixed. – Lai Mar 31 '22 at 01:39

1 Answers1

3

In general, for any even power, substitute $\tan^2\theta = \frac12\tan^2 x$ to transform the integral to a manageable one

$$I_{2m}= \int\left(\frac{\cos \theta}{1+\sin ^{2} \theta}\right)^{2m} d \theta = \frac1{2^{m-\frac12}}\int \cos^{2m}x\>(1+\cos^2x)^{m-1}dx $$ which, for $m=2$, reduces to \begin{align} I_4 = &\>\frac1{2^{3/2}}\int \cos^{4}x\>(1+\cos^2x)\>dx\\ = &\>\frac{1}{2^{5/2}}\left(\frac13\cos^5x +\frac{11}{12}\cos^3x +\frac{11}{8}\cos x \right)\sin x + \frac{11}{2^{11/2}}x+C \end{align}

Quanto
  • 97,352