$2^{2n+1} +1$ divisible by $3$
Inducción over n
Let $n=1$, then: $$2^{2(1)+1}+1=2^{3}+1=9$$ It works!
Hip. $$2^{2n+1} +1=3k$$
Then we have to show: $$2^{2n+3} +1=3k$$
Any guess?
$2^{2n+1} +1$ divisible by $3$
Inducción over n
Let $n=1$, then: $$2^{2(1)+1}+1=2^{3}+1=9$$ It works!
Hip. $$2^{2n+1} +1=3k$$
Then we have to show: $$2^{2n+3} +1=3k$$
Any guess?
Another idea:
$$2^{2n+3}+1=4\cdot2^{2n+1}+1=\overbrace{2^{2n+1}+1}^{=3k,\,\text{by Ind Hyp.}}+\color{red}3\cdot2^{2n+1}$$
Conceptually the induction follows very simply by multiplying the congruences below using CPR = Congruence Product Rule $ $ as follows $$\begin{align}\bmod 3\!:\qquad \color{#c00}{2^{\large 2}}\ &\equiv\ \ \ \color{#c00}{1}\\ 2^{\large 2n+1}&\equiv -1\qquad\ \ P(n)\\ \Rightarrow\ \ \color{#c00}{2^{\large 2}}\,2^{\large 2n+1}&\equiv -1\cdot \color{#c00}{1}\quad\ P(n\!+\!1)\end{align}\quad\ \ \ $$
See this answer for further discussion, including how to do the above without congruences.