We do have the elementary proof of the monotonicity of $(1+\frac{1}{n})^{n}$ and $(1+\frac{1}{n})^{n+1}$ .
Here is an example.
First we have $$\ln \left(1+\frac{1}{n+1}\right) = \int_{1}^{1+\frac{1}{n+1}}\frac{1}{x}\,dx>\frac{1}{n+2}=\frac{n\left(n+1\right)}{n+2}\int_{1+\frac{1}{n+1}}^{1+\frac{1}{n}}\,dx > n\int_{1+\frac{1}{n+1}}^{1+\frac{1}{n}}\frac{1}{x}\,dx$$ Now add $$n\ln \left(1+\frac{1}{n+1}\right) = n\int_{1}^{1+\frac{1}{n+1}}\frac{1}{x}\,dx$$ We get $$\left(n+1\right)\ln \left(1+\frac{1}{n+1}\right) > n\int_{1}^{1+\frac{1}{n}}\frac{1}{x}\,dx = n\ln \left(1+\frac{1}{n}\right)$$
So can we solve the monotonicity of $a_{n} =(1+\frac{1}{n})^{n+\frac{1}{2}}$ similiarly? Or by any other elegant elementary proof?