(A) We divide in two cases:
Case 1: $n=m^2-1$ for some $m\in\mathbb N$.
In this case, we have that
$$
\left\lfloor \dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} \right\rfloor-\left\lfloor \dfrac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor=\left\lfloor \dfrac{m^2}{\lfloor \sqrt{m^2} \rfloor} \right\rfloor-\left\lfloor \dfrac{m^2-1}{\lfloor \sqrt{m^2-1} \rfloor} \right\rfloor
$$
and since $\lfloor \sqrt{m^2} \rfloor=m$ and $\lfloor \sqrt{m^2-1} \rfloor=m-1$,
$$
\left\lfloor \dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} \right\rfloor-\left\lfloor \dfrac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor=\left\lfloor \dfrac{m^2}{m} \right\rfloor-\left\lfloor \dfrac{m^2-1}{m-1} \right\rfloor = m-(m+1)=-1
$$
Case 2: $n$ is not of the form $m^2-1$.
Pick $m\in\mathbb N$ such that $m^2\leq n \leq (m+1)^2-1$. Since $n\neq (m+1)^2-1$, we have $m^2\leq n \leq (m+1)^2-2$, and consequently,
$$
m^2\leq n,\ n+1<(m+1)^2\ \Rightarrow\ m\leq \sqrt n,\ \sqrt{n+1}<m+1\ \Rightarrow\ \lfloor\sqrt n\rfloor=\lfloor\sqrt{n+1}\rfloor=m.
$$
Then
$$
\left|\frac{n+1}{\lfloor \sqrt{n+1}\rfloor}-\frac{n}{\lfloor \sqrt n\rfloor}\right|=\left|\frac{n+1}{m}-\frac{n}{m}\right|=\frac{1}{m}\leq 1,
$$
and this implies that
$$
\left\lfloor \dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} \right\rfloor-\left\lfloor \dfrac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor \in \{-1,0,1\}.
$$
(B) We have that $\lfloor \sqrt{(n+1)^2-1}\rfloor=n$, because
$$
n^2\leq(n+1)^2-1<(n+1)^2,
$$
so
$$
\frac{(n+1)^2-1}{\lfloor \sqrt{(n+1)^2-1}\rfloor} = \frac{n^2+2n}{n}=n+2,
$$
from which follows the identity (B).
(C) First, we shall characterize the numbers such that
$$
\left\lfloor \dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} \right\rfloor-\left\lfloor \dfrac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor=1.
$$
By the Case 1 at the proof of (A), we already know that $n$ has not the form $m^2-1$. Pick $m\in\mathbb N$ such that $m^2\leq n\leq (m+1)^2-1$. By the Case 2 at the proof of (A), we know that $\lfloor\sqrt n\rfloor=\lfloor\sqrt{n+1}\rfloor=m$.
Put $n= m^2+k$, with $0\leq k \leq 2m$. Then
$$
\dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} = m +\frac{k+1}{m},
$$
and
$$
\dfrac{n}{\lfloor \sqrt{n} \rfloor} = m +\frac{k}{m}.
$$
So,
$$
\left\lfloor \dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} \right\rfloor-\left\lfloor \dfrac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor = \left\lfloor m+\dfrac{k+1}{m} \right\rfloor-\left\lfloor m+\dfrac{k}{m} \right\rfloor = \left\lfloor \dfrac{k+1}{m} \right\rfloor-\left\lfloor \dfrac{k}{m} \right\rfloor,
$$
and the cases that this equals $1$ are precisely when $k=m-1$ and $k=2m-1$.
This way we proved that the only numbers $n$ that satisfiy
$$
\left\lfloor \dfrac{n+1}{\lfloor \sqrt{n+1} \rfloor} \right\rfloor-\left\lfloor \dfrac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor=1,
$$
Are precisely the $n$'s of the form $m^2+m-1$ or $m^2+2m-1$, for some natural $m$.
Now it only lasts to verify that the numbers
$n+\left\lfloor\left(\dfrac{n}{2}-\dfrac{1}{4n}\right)^2\right\rfloor$ have one of these forms.
Let us do it. First, note that
$$
\left(n-\frac{1}{2n}\right)^2=n^2-1+\frac{1}{4n^2},
$$
and since $0<\dfrac {1}{4n^2}<1$,
$$
n^2-1<\left(n-\frac{1}{2n}\right)^2< n^2.
$$
We divide in two cases:
Case 1. $n=2k$.
Then
$$
\begin{array}{rcl}
4k^2-1<\left(n-\frac{1}{2n}\right)^2<4k^2 & \Rightarrow & k^2-1<k^2-\frac{1}{4}<\frac{1}{4}\left(n-\frac{1}{2n}\right)^2 < k^2 \\
& \Rightarrow & k^2-1<\left(\frac{n}{2}-\frac{1}{4n}\right)^2< k^2 \\
& \Rightarrow & \left\lfloor\left(\frac{n}{2}-\frac{1}{4n}\right)^2\right\rfloor = k^2-1 \\
& \Rightarrow & n+ \left\lfloor\left(\frac{n}{2}-\frac{1}{4n}\right)^2\right\rfloor = n + k^2 - 1 = k^2 + 2k -1.
\end{array}
$$
Case 2. $n=2k-1$.
Then
$$
\begin{array}{rcl}
4k^2-4k<\left(n-\frac{1}{2n}\right)^2<4k^2 -4k+1 & \Rightarrow & k^2-k<\frac{1}{4}\left(n-\frac{1}{2n}\right)^2 < k^2 -k +\frac{1}{4} < k^2 -k +1\\
& \Rightarrow & k^2-k<\left(\frac{n}{2}-\frac{1}{4n}\right)^2< k^2 -k+1\\
& \Rightarrow & \left\lfloor\left(\frac{n}{2}-\frac{1}{4n}\right)^2\right\rfloor = k^2-k\\
& \Rightarrow & n+ \left\lfloor\left(\frac{n}{2}-\frac{1}{4n}\right)^2\right\rfloor = n + k^2 - k = k^2 +k-1.
\end{array}
$$
I'm thinking rearrangement to $\frac{(2n^2-1)^2}{16n^2}$ and a determination of their greatest common divisor ought to be the way to go I think I mean for $n \gt 2$ you are assured the floor nor the fractional part is ever zero, so surely this would allow us to make assertions that can allow the removal of the floor function in place of some integer multiple of one of the two forms you mentioned
– Adam Ledger Oct 28 '18 at 01:54$f(n)=\left( \frac{1}{2}n-\frac{1}{4n}\right) ^{2}$
we have:
$\frac{1}{f(2n+1)}-\Bigl\lfloor \frac{1}{f(2n+1)} \Bigr\rfloor=f(n+2)$
– Adam Ledger Oct 28 '18 at 02:06Thanks very much for this by the way I do appreciate it immensely
– Adam Ledger Oct 28 '18 at 13:50