As I show here, such results boil down to the first $\,2\,$ terms of the Binomial Theorem, viz.
$\!\bmod m\!:\ c\equiv -a(b\!-\!1)\,$ so $\ \color{#0a0}0\equiv (b\!-\!1)c\equiv -\color{#0a0}{a(b\!-\!1)^2}$ so only $1$st $2$ terms survive below
$\qquad\quad\ \ \ a(1+b\!-\!1)^n =\, \color{#c00}{a\, +\,} n\,\underbrace{a(b\!-\!1)}_{\Large \equiv\ \color{#c00}{-c}}\ +\ \underbrace{\color{#0a0}{a(b\!-\!1)^2}(\cdots)}_{\large \equiv\ \color{#0a0}0}\ \,$ so adding $\ cn+d\ $ we get
$\quad\ \Rightarrow\ \ ab^n +cn+d\, \equiv\, \color{#c00}{a-c\,n}+cn\! +\! d \,\equiv\, a\!+\!d\,\equiv\, 0\ \ \ $ QED
Remark $ $ If you require an inductive proof then do so for the first $2$ terms in the Binomial Theorem. It's easy - the inductive step amounts to multiplying by $\,1\!+\!a\pmod{\!a^2},\,$ viz.
$\!\begin{align}{\rm mod}\,\ \color{#c00}{a^2}\!:\,\ (1+ a)^n\, \ \ \equiv&\,\ \ 1 + na\qquad\qquad\,\ \ {\rm i.e.}\ \ P(n)\\[1pt]
\Rightarrow\ \ (1+a)^{\color{}{n+1}}\! \equiv &\ (1+na)(1 + a)\quad\, {\rm by}\ \ 1+a \ \ \rm times\ prior\\
\equiv &\,\ \ 1+ na+a+n\color{#c00}{a^2}\\
\equiv &\,\ \ 1\!+\! (n\!+\!1)a\qquad\ \ \ {\rm i.e.}\ \ P(\color{}{n\!+\!1})\\[2pt]
\end{align}$