0

So I want to prove that is in title. I'm working with modular arithmetic, so if any of you can show me a hint, it will be perfect.

kccu
  • 20,808
  • 1
  • 22
  • 41

2 Answers2

3

We find that $$ \frac{3^{2n+3}+40n-27}{8}=\frac{27(9^n-1)+40n}{8}=27(9^{n-1}+9^{n-2}+\cdots+1)+5n. $$ And also $$ 27(9^{n-1}+9^{n-2}+\cdots+1)+5n\equiv 27(1+1+\cdots +1)+5n\equiv32n\equiv 0\ \;\text{(mod}\;8). $$ Therefore $64 \;|\; 3^{2n+3}+40n-27$ for all $n\ge 1$.

Myunghyun Song
  • 21,723
  • 2
  • 24
  • 60
0

Use induction and modular arithmetic: suppose that, for some $n$, $3^{2n+3}+40n-27\equiv 0\mod64$. We have to show that $$3^{2n+5}+40(n+1)-27=9\cdot3^{2n+3}+40n+13\equiv 0\mod64.$$ The inductive hypothesis can be rewritten as $$3^{2n+3}\equiv -40n +27\mod64,$$ so that $$9\cdot3^{2n+3}+40n+13\equiv-360n+243+40m+13=-320n+256\equiv 0\mod 64. $$

Bernard
  • 175,478