4

Prove that $(I+A^{-1})^{-1}=A(A+I)^{-1}$ assuming that the inverse matrices exist.

My idea is to show that $(I+A^{-1})$ is the inverse matrix of $A(A+I)^{-1}$ by proving $(I+A^{-1})A(A+I)^{-1}=I$ and $A(A+I)^{-1}(I+A^{-1})=I$.

I have started with

$(I+A^{-1})A(A+I)^{-1}=(IA+A^{-1}A)(A+I)^{-1}=(A+I)(A+I)^{-1}=I$

but when I go on to prove this the other way around

$A(A+I)^{-1}(I+A^{-1})=I$

I am not sure how to open up the expression.

Joe
  • 599

1 Answers1

3

A more direct manipulation would be simpler: $$\left(I+A^{-1}\right)^{-1}=\left((A+I)A^{-1}\right)^{-1}=(A^{-1})^{-1}(A+I)^{-1}=A(A+I)^{-1}$$

keoxkeox
  • 439