Prove that $(I+A^{-1})^{-1}=A(A+I)^{-1}$ assuming that the inverse matrices exist.
My idea is to show that $(I+A^{-1})$ is the inverse matrix of $A(A+I)^{-1}$ by proving $(I+A^{-1})A(A+I)^{-1}=I$ and $A(A+I)^{-1}(I+A^{-1})=I$.
I have started with
$(I+A^{-1})A(A+I)^{-1}=(IA+A^{-1}A)(A+I)^{-1}=(A+I)(A+I)^{-1}=I$
but when I go on to prove this the other way around
$A(A+I)^{-1}(I+A^{-1})=I$
I am not sure how to open up the expression.