let $f\colon \Bbb R \to \Bbb R$ be a function having a property as given $$ \lim_{h \to 0} {f(x+h)-f(x-h)\over h}$$ exists for all $x \in \Bbb R$ then $f(x)$ is differentiable for all $x \in \Bbb R$. True/false??
I think its true as $$ \lim_{h\to 0} {f(x+h)-f(x-h)\over h} ...(1)$$ exists for all $x \in \Bbb R$ so put $x=x+h$ in $(1)$ so $$ \lim_{h\to 0} {f(x+2h)-f(x)\over h}$$ exists i.e $$ 2\lim_{h\to 0} {f(x+2h)-f(x)\over 2h}$$ exists and taking $k=2h$ then $$ 2\lim_{k\to 0} {f(x+k)-f(x)\over k}$$ exists i.e $2f^{'}(x)$ exists so $f^{'}(x)$ exists for all $x \in \Bbb R$.
Is this is right??