I'm trying to calculate the following limit using Stolz-Cesáro
$$\lim_{n \to \infty}{\frac{\sqrt[n]{n!}}{n}} \qquad {(1)}$$
I know the result is $e^{-1}$ using a different method. In the book I'm using it's suggested to use the sequences $a_n=\ln(\frac{n!}{n^n})$ and $b_n=n$.
In this case we have :
$$\lim_{n \to \infty}{\frac{\ln \left(\frac{n!}{n^n}\right)}{n}}=\lim_{n \to \infty}\left[{ \frac{\ln \left(\frac{n!}{n^n}\right)-\ln \left(\frac{(n+1)!}{(n+1)^{n+1}}\right)}{n+1-n}}\right]=\lim_{n \to \infty}{\ln \left (\frac{n^n}{(n+1)^n}\right)}=-1$$
Not sure how this implies that $(1)$ is equal to $e^{-1}$.