You can start by defining
$$I(a)=\int_0^{\pi/2} \sin^a x\,dx$$
Your desired integral is then just $I'(0)$.
Now, in order to evaluate $I(a)$ in closed form, we will have to use the Beta function and its connection to the Gamma function:
\begin{align}
I(a)&=\int_0^{\pi/2} \sin^a x\,dx \\
&=\frac{1}{2}B\left(a/2+1/2,1/2\right) \\
&=\frac{\Gamma\left(a/2+1/2\right)\Gamma\left(1/2\right)}{2\Gamma(a/2+1)}
\\
&= \frac{\sqrt{\pi}}{2}\frac{\Gamma\left(a/2+1/2\right)}{\Gamma(a/2+1)}
\end{align}
Differentiating $I(a)$ and letting $a\to 0$ then yields
\begin{align}
I'(a)\Big|_{a=0}&=\frac{\sqrt{\pi}}{2}\cdot\frac{\Gamma\left(a/2+1/2\right)\left(\psi^{(0)}\left(a/2+1/2\right) - \psi^{(0)}(a/2+1)\right)}{\Gamma(a/2)}\Biggr|_{a=0} \\
&=-\frac{\sqrt{\pi}}{2}\cdot \sqrt{\pi}\log 2 \\
&=-\frac{\pi}{2}\log 2
\end{align}
And we can conclude that
$$\int_0^{\pi/2} \log\sin x\,dx = -\frac{\pi}{2} \log 2$$