Let $R[x]$ be the ring of polynomials with coefficients in $R$. Let $p_k$ be the $k$-th prime number with $p_0 = 2$.
Now consider
$\mathbb{Q}^0_0 := \{ P(\sqrt{2})\ |\ P \in \mathbb{Q}[x]\} =\mathbb{Q}[\sqrt{2}]$
$\mathbb{Q}^2_0 := \{ a + b\sqrt{2}\ |\ a, b \in \mathbb{Q}\}$
$\mathbb{Q}^4_0 := \{ \frac{a}{b} \ |\ a, b \in \mathbb{Q}[\sqrt{2}]\} = \mathbb{Q}(\sqrt{2})$
It's easy to show that $\mathbb{Q}^0_0 = \mathbb{Q}^2_0 = \mathbb{Q}^4_0$.
Now consider
$\mathbb{Q}^0_1 := \{ P(\sqrt{3})\ |\ P \in \mathbb{Q}[\sqrt{2}][x]\} =\mathbb{Q}[\sqrt{2},\sqrt{3}]$
$\mathbb{Q}^1_1 := \{ P(\sqrt{2} + \sqrt{3})\ |\ P \in \mathbb{Q}[x]\} = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$
$\mathbb{Q}^2_1 := \{ a + b\sqrt{3}\ |\ a, b \in \mathbb{Q}[\sqrt{2}]\}$
$\mathbb{Q}^3_1 := \{ a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3}\ |\ a, b, c, d \in \mathbb{Q}\}$
$\mathbb{Q}^4_1 := \{ \frac{a}{b} \ |\ a, b \in \mathbb{Q}[\sqrt{2},\sqrt{3}]\} = \mathbb{Q}(\sqrt{2},\sqrt{3})$
$\mathbb{Q}^5_1 := \{ \frac{a}{b} \ |\ a, b \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]\} = \mathbb{Q}(\sqrt{2} + \sqrt{3})$
It takes some more work to show that $\mathbb{Q}^0_1 = \mathbb{Q}^1_1 = \mathbb{Q}^2_1 = \mathbb{Q}^3_1 = \mathbb{Q}^4_1 = \mathbb{Q}^5_1$.
The generalizations for $\mathbb{Q}^0_k, \mathbb{Q}^2_k, \mathbb{Q}^3_k, \mathbb{Q}^4_k$ seem obvious:
$\mathbb{Q}^0_k := \{ P(\sqrt{p_k})\ |\ P \in \mathbb{Q}_{k-1}[x]\} $
$\mathbb{Q}^2_k := \{ a + b\sqrt{p_k}\ |\ a, b \in \mathbb{Q}_{k-1}\}$
$\mathbb{Q}^3_k := \{ \sum_{S \subset \{0,\dots k-1\}} a_S \prod_{i \in S}\sqrt{p_i} \ |\ a_S \in \mathbb{Q}\}$
$\mathbb{Q}^4_k := \{ \frac{a}{b} \ |\ a, b \in \mathbb{Q}_k\} $
and it seems straightforward to show that $\mathbb{Q}^0_k = \mathbb{Q}^2_k = \mathbb{Q}^4_k$ and possibly $\mathbb{Q}^0_k = \mathbb{Q}^3_k$.
But how to generalize $\mathbb{Q}^1_k$ and $\mathbb{Q}^5_k$ and to prove $\mathbb{Q}^0_k =\mathbb{Q}^1_k$ and/or $\mathbb{Q}^1_k = \mathbb{Q}^5_k$? Which combinations of square roots $\sqrt{p_i}$ should be taken into account?
Finally consider
$$\mathbb{Q}^0_\omega = \lim_{k\rightarrow \infty} \mathbb{Q}^0_k = \mathbb{Q}[\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7},\dots]$$
$$\mathbb{Q}^4_\omega = \lim_{k\rightarrow \infty} \mathbb{Q}^4_k = \mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7},\dots)$$
i.e. the extensions of $\mathbb{Q}$ by the square roots of all prime numbers. I assume these extensions are well-defined, and I assume they are equal.
With which otherwise defined extension of $\mathbb{Q}$ are these extensions identical?