$\textbf{Problem } \mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}]$ for all $n\geq 2$.
I knew that $\mathbb{Q}[\sqrt{2},\sqrt{3}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}]$.
Thus, I'll prove the problem by using induction.
Suppose $\mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}]$
It suffices to show that $\mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n}]\subset \mathbb{Q}[\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n+1}]$ since $$ \mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n}]\subset \mathbb{Q}[\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n+1}]\subset \mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n},\sqrt{n+1}] $$ and $$[ \mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n},\sqrt{n+1}]:Q[\sqrt{2},\sqrt{3},\dots,\sqrt{n}]]\leq2$$ imply $$ \mathbb{Q}[\sqrt{2}+\sqrt{3}+\dots+\sqrt{n}+\sqrt{n+1}]=\mathbb{Q}[\sqrt{2},\sqrt{3},\dots,\sqrt{n},\sqrt{n+1}]$$
Any help is appreciated..
Thank you!