$$ \int_{0}^{+\infty}\sin\left(x^n+\frac{1}{x^n}\right)\frac{dx}{x} = 2\int_{1}^{+\infty}\sin\left(x^n+\frac{1}{x^n}\right)\frac{dx}{x}=2\int_{0}^{+\infty}\sin(2\cosh(nz))\,dz $$
equals, in the improper-Riemann sense,
$$ \frac{2}{n}\int_{0}^{+\infty}\sin(2\cosh u)\,du = \frac{2}{n}\underbrace{\int_{1}^{+\infty}\frac{\sin(2v)}{\sqrt{v^2-1}}\,dv}_{\text{constant}}. $$
In order to derive an explicit expression for the involved constant it is practical to study the function
$$ f(a) = \int_{1}^{+\infty}\frac{\sin(a v)}{\sqrt{v^2-1}}\,dv$$
by integration by parts and differentiation under the integral sign, or just through the Laplace transform.
We have
$$ (\mathcal{L}f)(s) = \int_{1}^{+\infty}\frac{v}{(s^2+v^2)\sqrt{v^2-1}}\,dv=\frac{\pi}{2\sqrt{1+s^2}}=g(s) $$
and by the extended binomial theorem
$$ g(s) = \frac{\pi}{2}\sum_{n\geq 0}\frac{(-1)^n \binom{2n}{n}}{4^n s^{2n+1}} $$
such that
$$ f(a) = (\mathcal{L}^{-1}g)(a) = \frac{\pi}{2}\sum_{n\geq 0}\frac{(-1)^n \binom{2n}{n}}{4^n (2n)!}a^{2n}=\frac{\pi}{2}\sum_{n\geq 0}\frac{(-1)^n a^{2n}}{4^n n!^2} = \frac{\pi}{2}\,J_0(a)$$
by the series definition of $J_0$. By putting everything together we get:
$$ \int_{0}^{+\infty}\sin\left(x^n+\frac{1}{x^n}\right)\frac{dx}{x} = \color{red}{\frac{\pi\,J_0(2)}{n}}\approx \frac{1105}{1571 n}. $$