Use Simpson's rule to approximate this integral.
Below is the formula for using Simpson's $\displaystyle\frac{1}{3}$ rule
$$\int _{a}^{b}f(x)\,dx \approx \frac {\Delta x}{3}\left(f(x_{0})+4f(x_{1})+2f(x_{2})+4f(x_{3})+2f(x_{4})+\cdots +4f(x_{n-1})+f(x_{n})\right)$$
Where $\Delta x=\frac{b-a}{n}$ and $x_i=a+i\Delta x$.
$n$ is the number of equal intervals you want to take. The bigger $n$ is, the better is the accuracy of your solution.
So if we take $n=6$, $b=2\pi$, $a=0$, we have $\displaystyle\Delta x=\frac{2\pi-0}{6}=\frac{\pi}{3}$, hence we have end points as $\displaystyle a=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}, 2 \pi=b$.
Using Simpson's $\displaystyle\frac{1}{3}$ rule, we have:
$\begin{align*}\int_{t=0}^{2\pi}\ {e^{\sin t}}dt&\approx\frac{\Delta x}{3}\left(f(x_{0})+4f(x_{1})+2f(x_{2})+4f(x_{3})+2f(x_{4})+4f(x_{5})+f(x_{6})\right)\\&\approx\frac{\pi}{3*3}\left(f(0)+4f\left(\frac{\pi}{3}\right)+2f\left(\frac{2\pi}{3}\right)+4f\left(\frac{3\pi}{3}\right)+2f\left(\frac{4\pi}{3}\right)+4f\left(\frac{5\pi}{3}\right)+f(2\pi)\right)\\&\approx\frac{\pi}{9}\left(1+9.50977070094466+4.75488535047233+...+1.68248010421646+1\right)\\&\approx7.95464392016463\end{align*}$
And there you have it: $$\int_{t=0}^{2\pi}\ {e^{\sin t}}dt\approx7.95\text{ (correct to 2 decimal places).}$$
Like I have mentioned above if we keep increasing the number of intervals ($n$), the above approximation will get closer and closer to the actual answer.