You would want this version:
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 3 }{ 5 } & 1 & 0 & 0 \\
\frac{ 1 }{ 3 } & 0 & 1 & 0 \\
- \frac{ 1 }{ 5 } & - \frac{ 1 }{ 3 } & - \frac{ 3 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
15 & 0 & 0 & 0 \\
0 & \frac{ 48 }{ 5 } & 0 & 0 \\
0 & 0 & \frac{ 40 }{ 3 } & 0 \\
0 & 0 & 0 & \frac{ 128 }{ 15 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & - \frac{ 1 }{ 3 } \\
0 & 0 & 1 & - \frac{ 3 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
15 & 9 & 5 & - 3 \\
9 & 15 & 3 & - 5 \\
5 & 3 & 15 & - 9 \\
- 3 & - 5 & - 9 & 15 \\
\end{array}
\right)
$$
Since $D$ is positive definite, create a matrix $F$ with entries $\sqrt d$ to get $Q^T F^T F Q = (FQ)^T (FQ) = H$ after deleting the $D.$ Let's see, you had a factor of $1/4,$ so $ (FQ/2)^T (FQ/2) = H/4$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = \left(
\begin{array}{rrrr}
15 & 9 & 5 & - 3 \\
9 & 15 & 3 & - 5 \\
5 & 3 & 15 & - 9 \\
- 3 & - 5 & - 9 & 15 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrrr}
15 & 9 & 5 & - 3 \\
9 & 15 & 3 & - 5 \\
5 & 3 & 15 & - 9 \\
- 3 & - 5 & - 9 & 15 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrrr}
15 & 0 & 5 & - 3 \\
0 & \frac{ 48 }{ 5 } & 0 & - \frac{ 16 }{ 5 } \\
5 & 0 & 15 & - 9 \\
- 3 & - \frac{ 16 }{ 5 } & - 9 & 15 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrrr}
1 & 0 & - \frac{ 1 }{ 3 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & - \frac{ 1 }{ 3 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & \frac{ 1 }{ 3 } & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrrr}
15 & 0 & 0 & - 3 \\
0 & \frac{ 48 }{ 5 } & 0 & - \frac{ 16 }{ 5 } \\
0 & 0 & \frac{ 40 }{ 3 } & - 8 \\
- 3 & - \frac{ 16 }{ 5 } & - 8 & 15 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & \frac{ 1 }{ 5 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & - \frac{ 1 }{ 3 } & \frac{ 1 }{ 5 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrrr}
15 & 0 & 0 & 0 \\
0 & \frac{ 48 }{ 5 } & 0 & - \frac{ 16 }{ 5 } \\
0 & 0 & \frac{ 40 }{ 3 } & - 8 \\
0 & - \frac{ 16 }{ 5 } & - 8 & \frac{ 72 }{ 5 } \\
\end{array}
\right)
$$
==============================================
$$ E_{4} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & \frac{ 1 }{ 3 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{4} = \left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & - \frac{ 1 }{ 3 } & 0 \\
0 & 1 & 0 & \frac{ 1 }{ 3 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{4} = \left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & - \frac{ 1 }{ 3 } \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{4} = \left(
\begin{array}{rrrr}
15 & 0 & 0 & 0 \\
0 & \frac{ 48 }{ 5 } & 0 & 0 \\
0 & 0 & \frac{ 40 }{ 3 } & - 8 \\
0 & 0 & - 8 & \frac{ 40 }{ 3 } \\
\end{array}
\right)
$$
==============================================
$$ E_{5} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \frac{ 3 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{5} = \left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & - \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & \frac{ 1 }{ 3 } \\
0 & 0 & 1 & \frac{ 3 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{5} = \left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & - \frac{ 1 }{ 3 } \\
0 & 0 & 1 & - \frac{ 3 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{5} = \left(
\begin{array}{rrrr}
15 & 0 & 0 & 0 \\
0 & \frac{ 48 }{ 5 } & 0 & 0 \\
0 & 0 & \frac{ 40 }{ 3 } & 0 \\
0 & 0 & 0 & \frac{ 128 }{ 15 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 3 }{ 5 } & 1 & 0 & 0 \\
- \frac{ 1 }{ 3 } & 0 & 1 & 0 \\
- \frac{ 1 }{ 5 } & \frac{ 1 }{ 3 } & \frac{ 3 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
15 & 9 & 5 & - 3 \\
9 & 15 & 3 & - 5 \\
5 & 3 & 15 & - 9 \\
- 3 & - 5 & - 9 & 15 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 3 }{ 5 } & - \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & \frac{ 1 }{ 3 } \\
0 & 0 & 1 & \frac{ 3 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
15 & 0 & 0 & 0 \\
0 & \frac{ 48 }{ 5 } & 0 & 0 \\
0 & 0 & \frac{ 40 }{ 3 } & 0 \\
0 & 0 & 0 & \frac{ 128 }{ 15 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 3 }{ 5 } & 1 & 0 & 0 \\
\frac{ 1 }{ 3 } & 0 & 1 & 0 \\
- \frac{ 1 }{ 5 } & - \frac{ 1 }{ 3 } & - \frac{ 3 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
15 & 0 & 0 & 0 \\
0 & \frac{ 48 }{ 5 } & 0 & 0 \\
0 & 0 & \frac{ 40 }{ 3 } & 0 \\
0 & 0 & 0 & \frac{ 128 }{ 15 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 3 }{ 5 } & \frac{ 1 }{ 3 } & - \frac{ 1 }{ 5 } \\
0 & 1 & 0 & - \frac{ 1 }{ 3 } \\
0 & 0 & 1 & - \frac{ 3 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
15 & 9 & 5 & - 3 \\
9 & 15 & 3 & - 5 \\
5 & 3 & 15 & - 9 \\
- 3 & - 5 & - 9 & 15 \\
\end{array}
\right)
$$