I not solve the follow limit $$\lim_{p\rightarrow 0} \bigg[\int_{\Omega} |f|^p d\mu \bigg]^{1/p} = \exp\bigg[ \int_{\Omega} \log|f|d\mu \bigg],$$
where $(\Omega, \mathcal{F}, \mu)$ is a probability space and $f,\log |f| \in L^1(\Omega).$
Can someone help me?
Thank you!