Let $\Omega$ $\subseteq$ $\Bbb R^{n}$ be bounded and $u$ be a measurable function on $\Omega$ Such that $|u|^{p} \in {L^{1}_{\mathrm{loc}}(\Omega)}$ for some $p \in \Bbb R$. Then how to show the following?
$$\lim_{p\rightarrow0} \left(\frac{1}{|\Omega|}\int_{\Omega} |u|^{p}\,\mathrm{d}x\right)^{\frac{1}{p}} = \exp \left(\frac{1}{|\Omega|}\int_{\Omega}\log|u|\,\mathrm{d}x\right)$$
I attempted as follows:
$$\lim_{p\rightarrow0} \left(\frac{1}{|\Omega|}\int_{\Omega} |u|^{p}\,\mathrm{d}x\right)^{\frac1p} = \lim_{p\rightarrow0} \frac{1}{|\Omega|^\frac{1}{p}}\left(\int_{\Omega}|u|^{p}\,\mathrm{d}x\right)^{\frac1p} = \exp \lim_{p\rightarrow0} \frac{1}{|\Omega|^\frac1p} \log\left(\int_{\Omega} |u|^{p}\,\mathrm{d}x\right)^{\frac1p}= \exp\left(\frac{1}{|\Omega|}\int_{\Omega}\log|u|\,\mathrm{d}x\right)$$ However;I think some steps especially the last two are not satisfactory for me.If you see that you're well come!