The section of the enveloping cone of the ellipsoid whose vertex is $P$, by the plane $z=0$ is a parabola. Find the locus of $P$.
The given ellipsoid is $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1$ And the vertex be $P(x_1,y_1,z_1)$ Therefore equation of enveloping cone of $P$ to this ellipsoid is $SS_1=T^2$. That is, $$ \left( \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}-1 \right) \left( \frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}+\frac{z_1^2}{c^2}-1 \right)= \left( \frac{xx_1}{a^2}+\frac{yy_1}{b^2}+\frac{zz_1}{c^2}-1 \right)^2$$
This meets the plane $z=0$ then
$$ \left( \frac{x^2}{a^2}+\frac{y^2}{b^2}-1 \right) \left( \frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}+\frac{z_1^2}{c^2}-1 \right)= \left( \frac{xx_1}{a^2}+\frac{yy_1}{b^2}-1 \right)^2$$
I don't know after this some one plz help.