Assume that $N(t)$ is a stochastic process with positive and integer values. We know that:
$\frac{N(t)}{t} \xrightarrow{\text{P}} c, \hspace{0.5cm} t \rightarrow \infty$
where $c$ is positive and integer valued random variable. I would like to prove that: $\frac{[c t]}{N(t)} \xrightarrow{\text{P}} 1$ in a formal way, because it looks intuitively.
Is this attempt even close to the answer?
\begin{align} P \left( \left| \frac{[c t]}{N(t)} - 1 \right| > \epsilon \right) &= P \left( [c t] - N(t) > \epsilon N(t) \right) + P \left( [c t] - N(t) < - \epsilon N(t) \right) \\&\leq P \left( ct + 1 - N(t) > \epsilon N(t) \right) + P \left( ct - 1 - N(t) < -\epsilon N(t) \right)\\ & = P \left( ct - N(t) > \epsilon N(t) - 1 \right) + P \left( ct - N(t) < \epsilon N(t) + 1 \right). \end{align}
And what can I do now for obtaining the proof?